Making the Output of Seasonal Climate Models More Palatable to Agriculture: A Copula-Based Postprocessing Method

2020 ◽  
Vol 59 (3) ◽  
pp. 497-515 ◽  
Author(s):  
Ming Li ◽  
Huidong Jin ◽  
Jaclyn N. Brown

AbstractSeasonal climate forecasts from raw climate models at coarse grids are often biased and statistically unreliable for credible crop prediction at the farm scale. We develop a copula-based postprocessing (CPP) method to overcome this mismatch problem. The CPP forecasts are ensemble based and are generated from the predictive distribution conditioned on raw climate forecasts. CPP performs univariate postprocessing procedures at each station, lead time, and variable separately and then applies the Schaake shuffle to reorder ensemble sequence for a more realistic spatial, temporal, and cross-variable dependence structure. The use of copulas makes CPP free of strong distributional assumptions and flexible enough to describe complex dependence structures. In a case study, we apply CPP to postprocess rainfall, minimum temperature, maximum temperature, and radiation forecasts at a monthly level from the Australian Community Climate and Earth-System Simulator Seasonal model (ACCESS-S) to three representative stations in Australia. We evaluate forecast skill at lead times of 0–5 months on a cross-validation theme in the context of both univariate and multivariate forecast verification. When compared with forecasts that use climatological values as the predictor, the CPP forecast has positive skills, although the skills diminish with increasing lead times and finally become comparable at long lead times. When compared with the bias-corrected forecasts and the quantile-mapped forecasts, the CPP forecast is the overall best, with the smallest bias and greatest univariate forecast skill. As a result of the skill gain from univariate forecasts and the effect of the Schaake shuffle, CPP leads to the most skillful multivariate forecast as well. Further results investigate whether using ensemble mean or additional predictors can enhance forecast skill for CPP.

2003 ◽  
Vol 84 (12) ◽  
pp. 1761-1782 ◽  
Author(s):  
L. Goddard ◽  
A. G. Barnston ◽  
S. J. Mason

The International Research Institute for Climate Prediction (IRI) net assessment seasonal temperature and precipitation forecasts are evaluated for the 4-yr period from October–December 1997 to October–December 2001. These probabilistic forecasts represent the human distillation of seasonal climate predictions from various sources. The ranked probability skill score (RPSS) serves as the verification measure. The evaluation is offered as time-averaged spatial maps of the RPSS as well as area-averaged time series. A key element of this evaluation is the examination of the extent to which the consolidation of several predictions, accomplished here subjectively by the forecasters, contributes to or detracts from the forecast skill possible from any individual prediction tool. Overall, the skills of the net assessment forecasts for both temperature and precipitation are positive throughout the 1997–2001 period. The skill may have been enhanced during the peak of the 1997/98 El Niño, particularly for tropical precipitation, although widespread positive skill exists even at times of weak forcing from the tropical Pacific. The temporally averaged RPSS for the net assessment temperature forecasts appears lower than that for the AGCMs. Over time, however, the IRI forecast skill is more consistently positive than that of the AGCMs. The IRI precipitation forecasts generally have lower skill than the temperature forecasts, but the forecast probabilities for precipitation are found to be appropriate to the frequency of the observed outcomes, and thus reliable. Over many regions where the precipitation variability is known to be potentially predictable, the net assessment precipitation forecasts exhibit more spatially coherent areas of positive skill than most, if not all, prediction tools. On average, the IRI net assessment forecasts appear to perform better than any of the individual objective prediction tools.


PLoS Medicine ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. e1003542
Author(s):  
Felipe J. Colón-González ◽  
Leonardo Soares Bastos ◽  
Barbara Hofmann ◽  
Alison Hopkin ◽  
Quillon Harpham ◽  
...  

Background With enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive disease, environmental conditions and past patterns of dengue can be used to make predictions about future outbreak risk. These predictions improve public health planning and decision-making to ultimately reduce the burden of disease. Past approaches to dengue forecasting have used seasonal climate forecasts, but the predictive ability of a system using different lead times in a year-round prediction system has been seldom explored. Moreover, the transition from theoretical to operational systems integrated with disease control activities is rare. Methods and findings We introduce an operational seasonal dengue forecasting system for Vietnam where Earth observations, seasonal climate forecasts, and lagged dengue cases are used to drive a superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead. Bayesian spatiotemporal models were fit to 19 years (2002–2020) of dengue data at the province level across Vietnam. A superensemble of these models then makes probabilistic predictions of dengue incidence at various future time points aligned with key Vietnamese decision and planning deadlines. We demonstrate that the superensemble generates more accurate predictions of dengue incidence than the individual models it incorporates across a suite of time horizons and transmission settings. Using historical data, the superensemble made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8, 95% CI 60.6–148.0) than a baseline model which forecasts the same incidence rate every month (CRPS = 79.4, 95% CI 78.5–80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. The outbreak detection capability of the superensemble was considerably larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in southern Vietnam, an area that experiences semi-regular seasonal dengue transmission. The system also demonstrated added value across multiple areas compared to previous practice of not using a forecast. We use the system to make a prospective prediction for dengue incidence in Vietnam for the period May to October 2020. Prospective predictions made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102–575) than those made with the baseline model (CRPS = 125, 95% CI 120–168) but had larger uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions. Despite the demonstrated value of our forecasting system, the approach is limited by the consistency of the dengue case data, as well as the lack of publicly available, continuous, and long-term data sets on mosquito control efforts and serotype-specific case data. Conclusions This study shows that by combining detailed Earth observation data, seasonal climate forecasts, and state-of-the-art models, dengue outbreaks can be predicted across a broad range of settings, with enough lead time to meaningfully inform dengue control. While our system omits some important variables not currently available at a subnational scale, the majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years, the system will be prospectively evaluated and, if successful, potentially extended to other areas and other climate-sensitive disease systems.


2020 ◽  
Vol 148 (1) ◽  
pp. 437-456 ◽  
Author(s):  
Andrew Schepen ◽  
Yvette Everingham ◽  
Quan J. Wang

Abstract Multivariate seasonal climate forecasts are increasingly required for quantitative modeling in support of natural resources management and agriculture. GCM forecasts typically require postprocessing to reduce biases and improve reliability; however, current seasonal postprocessing methods often ignore multivariate dependence. In low-dimensional settings, fully parametric methods may sufficiently model intervariable covariance. On the other hand, empirical ensemble reordering techniques can inject desired multivariate dependence in ensembles from template data after univariate postprocessing. To investigate the best approach for seasonal forecasting, this study develops and tests several strategies for calibrating seasonal GCM forecasts of rainfall, minimum temperature, and maximum temperature with intervariable dependence: 1) simultaneous calibration of multiple climate variables using the Bayesian joint probability modeling approach; 2) univariate BJP calibration coupled with an ensemble reordering method (the Schaake shuffle); and 3) transformation-based quantile mapping, which borrows intervariable dependence from the raw forecasts. Applied to Australian seasonal forecasts from the ECMWF System4 model, univariate calibration paired with empirical ensemble reordering performs best in terms of univariate and multivariate forecast verification metrics, including the energy and variogram scores. However, the performance of empirical ensemble reordering using the Schaake shuffle is influenced by the selection of historical data in constructing a dependence template. Direct multivariate calibration is the second-best method, with its far superior performance in in-sample testing vanishing in cross validation, likely because of insufficient data relative to the number of parameters. The continued development of multivariate forecast calibration methods will support the uptake of seasonal climate forecasts in complex application domains such as agriculture and hydrology.


2000 ◽  
Vol 2 (3) ◽  
pp. 163-182 ◽  
Author(s):  
Alan F. Hamlet ◽  
Dennis P. Lettenmaier

Ongoing research by the Climate Impacts Group at the University of Washington focuses on the use of recent advances in climate research to improve streamflow forecasts at seasonal-to-interannual, decadal, and longer time scales. Seasonal-to-interannual climate forecasting capabilities have advanced significantly in the past several years, primarily because of improvements in the understanding of, and an ability to forecast, El Niño/Southern Oscillation (ENSO) at seasonal/interannual time scales, and because of better understanding of longer time scale climate phenomena like the Pacific Decadal Oscillation (PDO). These phenomena exert strong controls on climate variability along the Pacific Coast of North America. The streamflow forecasting techniques we have developed for Pacific Northwest (PNW) rivers are based on climate forecasts that facilitate longer lead times (as much as a year) than the methods that are traditionally used for water management (maximum forecast lead times of a few months). At interannual time scales, the simplest of these techniques involves resampling meteorological data from previous years identified to be in similar climate categories as are forecast for the coming year. These data are then used to drive a hydrology model, which produces an ensemble of streamflow forecasts that are analogous to those that result from the well-known Extended Streamflow Prediction (ESP) method. This technique is a relatively simple, but effective, way of incorporating long-lead climate information into streamflow forecasts. It faithfully captures the history of observed climate variability. Its main limitation is that the sample size of observed events for some climate categories is small because of the length of the historic record. Furthermore, it is unable to capture important aspects of global change, which may interact with shorter term variations through changes in climate phenomena like ENSO and PDO. An alternative to the resampling method is to use nested regional climate models to produce the long-lead climate forecasts. Success using this approach has been hindered to some degree by the bias that is inherent in climate models, even when downscaled using regional nested modeling approaches. Adjustment or correction for this bias is central to the use of climate model output for hydrologic forecasting purposes. Approaches for dealing with climate model bias in the context of global and meso-scale are presently an area of active research. We illustrate an experimental application of the nested climate modeling approach for the Columbia River Basin, and compare it with the simpler resampling method. At much longer time scales, changes in Columbia River flows that might be associated with global climate change are of considerable concern in the PNW, given recent Endangered Species Act listing of certain salmonid species, and the increase in water demand that is expected to follow increases in human population in the region. Many of the same general challenges associated with the spatial downscaling of climate forecasts are present in these long-range investigations. Additional uncertainties exist in the ability of climate models to predict the effects of changing greenhouse gas concentrations. These uncertainties tend to dominate the results, and lead us to use relatively simplemethods of downscaling seasonal temperature and precipitation to interpret the implications of alternative climate scenarios on PNW water resources.


2011 ◽  
Vol 17 (2) ◽  
pp. 153-163 ◽  
Author(s):  
K. Ravi Shankar ◽  
K. Nagasree ◽  
B. Venkateswarlu ◽  
Pochaiah Maraty

2018 ◽  
Vol 31 (2) ◽  
pp. 655-670 ◽  
Author(s):  
YuJia You ◽  
Xiaojing Jia

The interannual variations and the prediction of the leading two empirical orthogonal function (EOF) modes of spring (April–May) precipitation over China for the period from 1951 to 2014 are investigated using both observational data and the seasonal forecast made by six coupled climate models. The leading EOF mode of spring precipitation over China (EOF1-prec) features a monosign pattern, with the maximum loading located over southern China. The ENSO-related tropical Pacific SST anomalies in the previous winter can serve as a precursor for EOF1-prec. The second EOF mode of spring precipitation (EOF2-prec) over China is characterized by a dipole structure, with one pole near the Yangtze River and the other one with opposite sign over the Pearl River delta. A North Atlantic sea surface temperature (SST) anomaly dipole in the preceding March is found contribute to the prec-EOF2 and can serve as its predictor. A physics-based empirical (P-E) model is then formulated using the two precursors revealed by the observational analysis to forecast the variations of EOF1-prec and EOF2-prec. Compared to coupled climate models, which have little skill in forecasting the time variations of the two EOF modes, this P-E model can significantly improve the forecast skill of their time variations. A linear regression model is further established using the time series forecast by the P-E model to forecast the spring precipitation over China. Results suggest that the seasonal forecast skill of the spring precipitation over southeastern China, especially over the Yangtze River area, can be significantly improved by the regression model.


2005 ◽  
Vol 25 (8) ◽  
pp. 1127-1137 ◽  
Author(s):  
Rod McCrea ◽  
Len Dalgleish ◽  
Will Coventry

2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


Sign in / Sign up

Export Citation Format

Share Document