scholarly journals Long-range climate forecasting and its use for water management in the Pacific Northwest region of North America

2000 ◽  
Vol 2 (3) ◽  
pp. 163-182 ◽  
Author(s):  
Alan F. Hamlet ◽  
Dennis P. Lettenmaier

Ongoing research by the Climate Impacts Group at the University of Washington focuses on the use of recent advances in climate research to improve streamflow forecasts at seasonal-to-interannual, decadal, and longer time scales. Seasonal-to-interannual climate forecasting capabilities have advanced significantly in the past several years, primarily because of improvements in the understanding of, and an ability to forecast, El Niño/Southern Oscillation (ENSO) at seasonal/interannual time scales, and because of better understanding of longer time scale climate phenomena like the Pacific Decadal Oscillation (PDO). These phenomena exert strong controls on climate variability along the Pacific Coast of North America. The streamflow forecasting techniques we have developed for Pacific Northwest (PNW) rivers are based on climate forecasts that facilitate longer lead times (as much as a year) than the methods that are traditionally used for water management (maximum forecast lead times of a few months). At interannual time scales, the simplest of these techniques involves resampling meteorological data from previous years identified to be in similar climate categories as are forecast for the coming year. These data are then used to drive a hydrology model, which produces an ensemble of streamflow forecasts that are analogous to those that result from the well-known Extended Streamflow Prediction (ESP) method. This technique is a relatively simple, but effective, way of incorporating long-lead climate information into streamflow forecasts. It faithfully captures the history of observed climate variability. Its main limitation is that the sample size of observed events for some climate categories is small because of the length of the historic record. Furthermore, it is unable to capture important aspects of global change, which may interact with shorter term variations through changes in climate phenomena like ENSO and PDO. An alternative to the resampling method is to use nested regional climate models to produce the long-lead climate forecasts. Success using this approach has been hindered to some degree by the bias that is inherent in climate models, even when downscaled using regional nested modeling approaches. Adjustment or correction for this bias is central to the use of climate model output for hydrologic forecasting purposes. Approaches for dealing with climate model bias in the context of global and meso-scale are presently an area of active research. We illustrate an experimental application of the nested climate modeling approach for the Columbia River Basin, and compare it with the simpler resampling method. At much longer time scales, changes in Columbia River flows that might be associated with global climate change are of considerable concern in the PNW, given recent Endangered Species Act listing of certain salmonid species, and the increase in water demand that is expected to follow increases in human population in the region. Many of the same general challenges associated with the spatial downscaling of climate forecasts are present in these long-range investigations. Additional uncertainties exist in the ability of climate models to predict the effects of changing greenhouse gas concentrations. These uncertainties tend to dominate the results, and lead us to use relatively simplemethods of downscaling seasonal temperature and precipitation to interpret the implications of alternative climate scenarios on PNW water resources.

2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


2016 ◽  
Vol 29 (20) ◽  
pp. 7203-7213 ◽  
Author(s):  
Alan J. Hewitt ◽  
Ben B. B. Booth ◽  
Chris D. Jones ◽  
Eddy S. Robertson ◽  
Andy J. Wiltshire ◽  
...  

Abstract The inclusion of carbon cycle processes within CMIP5 Earth system models provides the opportunity to explore the relative importance of differences in scenario and climate model representation to future land and ocean carbon fluxes. A two-way analysis of variance (ANOVA) approach was used to quantify the variability owing to differences between scenarios and between climate models at different lead times. For global ocean carbon fluxes, the variance attributed to differences between representative concentration pathway scenarios exceeds the variance attributed to differences between climate models by around 2025, completely dominating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences between climate models continues to dominate beyond 2100. This suggests that modeled processes that determine ocean fluxes are currently better constrained than those of land fluxes; thus, one can be more confident in linking different future socioeconomic pathways to consequences of ocean carbon uptake than for land carbon uptake. The contribution of internal variance is negligible for ocean fluxes and small for land fluxes, indicating that there is little dependence on the initial conditions. The apparent agreement in atmosphere–ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The North Atlantic and Southern Ocean are key regions, where differences in modeled processes represent an important source of variability in projected regional fluxes.


2018 ◽  
Vol 31 (6) ◽  
pp. 2377-2388 ◽  
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Frank Sienz

Observations show that decadal (10–20 yr) to interdecadal (>20 yr) variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) closely follows that of the Pacific until the 1960s. Since then, the TIO SST exhibits a persistent warming trend, whereas the Pacific SST shows large-amplitude fluctuations associated with the interdecadal Pacific oscillation (IPO), and the decadal variability of the TIO SST is out of phase with that of the Pacific after around 1980. Here causes for the changing behavior of the TIO SST are explored, by analyzing multiple observational datasets and the recently available large-ensemble simulations from two climate models. It is found that on interdecadal time scales, the persistent TIO warming trend is caused by emergence of anthropogenic warming overcoming internal variability, while the time of emergence occurs much later in the Pacific. On decadal time scales, two major tropical volcanic eruptions occurred in the 1980s and 1990s causing decadal SST cooling over the TIO during which the IPO was in warm phase, yielding the out-of-phase relation. The more evident fingerprints of external forcing in the TIO compared to the Pacific result from the much weaker TIO internal decadal–interdecadal variability, making the TIO prone to the external forcing. These results imply that the ongoing warming and natural external forcing may make the Indian Ocean more active, playing an increasingly important role in affecting regional and global climate.


2017 ◽  
Author(s):  
Louise Arnal ◽  
Hannah L. Cloke ◽  
Elisabeth Stephens ◽  
Fredrik Wetterhall ◽  
Christel Prudhomme ◽  
...  

Abstract. This paper presents a Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts, benchmarked against the Ensemble Streamflow Prediction (ESP) forecasting approach. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only. However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to seven months of lead time, for certain months within a season. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making. Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for most of Europe. Patterns in the EFAS seasonal streamflow hindcasts skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim to improve climate-model based seasonal streamflow forecasting.


2019 ◽  
Vol 12 (7) ◽  
pp. 2797-2809 ◽  
Author(s):  
Sebastian Scher ◽  
Gabriele Messori

Abstract. Recently, there has been growing interest in the possibility of using neural networks for both weather forecasting and the generation of climate datasets. We use a bottom–up approach for assessing whether it should, in principle, be possible to do this. We use the relatively simple general circulation models (GCMs) PUMA and PLASIM as a simplified reality on which we train deep neural networks, which we then use for predicting the model weather at lead times of a few days. We specifically assess how the complexity of the climate model affects the neural network's forecast skill and how dependent the skill is on the length of the provided training period. Additionally, we show that using the neural networks to reproduce the climate of general circulation models including a seasonal cycle remains challenging – in contrast to earlier promising results on a model without seasonal cycle.


2020 ◽  
Vol 59 (3) ◽  
pp. 497-515 ◽  
Author(s):  
Ming Li ◽  
Huidong Jin ◽  
Jaclyn N. Brown

AbstractSeasonal climate forecasts from raw climate models at coarse grids are often biased and statistically unreliable for credible crop prediction at the farm scale. We develop a copula-based postprocessing (CPP) method to overcome this mismatch problem. The CPP forecasts are ensemble based and are generated from the predictive distribution conditioned on raw climate forecasts. CPP performs univariate postprocessing procedures at each station, lead time, and variable separately and then applies the Schaake shuffle to reorder ensemble sequence for a more realistic spatial, temporal, and cross-variable dependence structure. The use of copulas makes CPP free of strong distributional assumptions and flexible enough to describe complex dependence structures. In a case study, we apply CPP to postprocess rainfall, minimum temperature, maximum temperature, and radiation forecasts at a monthly level from the Australian Community Climate and Earth-System Simulator Seasonal model (ACCESS-S) to three representative stations in Australia. We evaluate forecast skill at lead times of 0–5 months on a cross-validation theme in the context of both univariate and multivariate forecast verification. When compared with forecasts that use climatological values as the predictor, the CPP forecast has positive skills, although the skills diminish with increasing lead times and finally become comparable at long lead times. When compared with the bias-corrected forecasts and the quantile-mapped forecasts, the CPP forecast is the overall best, with the smallest bias and greatest univariate forecast skill. As a result of the skill gain from univariate forecasts and the effect of the Schaake shuffle, CPP leads to the most skillful multivariate forecast as well. Further results investigate whether using ensemble mean or additional predictors can enhance forecast skill for CPP.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaohui Zheng ◽  
Qiguang Wang ◽  
Lihua Zhou ◽  
Qing Sun ◽  
Qi Li

This study used long-term in situ rainfall, snow, and streamflow data to explore the predictive contributions of snowmelt and rainfall to streamflow in six watersheds over the Western United States. Analysis showed that peak snow accumulation, snow-free day, and snowmelt slope all had strong correlation with peak streamflow, particularly in inland basins. Further analysis revealed that the variation of snow accumulation anomaly had strong lead correlation with the variation of streamflow anomaly. Over the entire Western United States, inner mountain areas had lead times of 4–10 pentads. However, in coastal areas, nearly all sites had lead times of less than one pentad. The relative contributions of rainfall and snowmelt to streamflow in different watersheds were calculated based on the snow lead time. The geographic distribution of annual relative contributions revealed that interior areas were dominated by snowmelt contribution, whereas the rainfall contribution dominated coastal areas. In the wet season, the snowmelt contribution increased in the western Pacific Northwest, whereas the rainfall contribution increased in the southeastern Pacific Northwest, southern Upper Colorado, and northern Rio Grande regions. The derived results demonstrated the predictive contributions of snowmelt and rainfall to streamflow. These findings could be considered a reference both for seasonal predictions of streamflow and for prevention of hydrological disasters. Furthermore, they will be helpful in the evaluation and improvement of hydrological and climate models.


2014 ◽  
Vol 27 (5) ◽  
pp. 2125-2142 ◽  
Author(s):  
John T. Abatzoglou ◽  
David E. Rupp ◽  
Philip W. Mote

Abstract Observed changes in climate of the U.S. Pacific Northwest since the early twentieth century were examined using four different datasets. Annual mean temperature increased by approximately 0.6°–0.8°C from 1901 to 2012, with corroborating indicators including a lengthened freeze-free season, increased temperature of the coldest night of the year, and increased growing-season potential evapotranspiration. Seasonal temperature trends over shorter time scales (<50 yr) were variable. Despite increased warming rates in most seasons over the last half century, nonsignificant cooling was observed during spring from 1980 to 2012. Observations show a long-term increase in spring precipitation; however, decreased summer and autumn precipitation and increased potential evapotranspiration have resulted in larger climatic water deficits over the past four decades. A bootstrapped multiple linear regression model was used to better resolve the temporal heterogeneity of seasonal temperature and precipitation trends and to apportion trends to internal climate variability, solar variability, volcanic aerosols, and anthropogenic forcing. The El Niño–Southern Oscillation and the Pacific–North American pattern were the primary modulators of seasonal temperature trends on multidecadal time scales: solar and volcanic forcing were nonsignificant predictors and contributed weakly to observed trends. Anthropogenic forcing was a significant predictor of, and the leading contributor to, long-term warming; natural factors alone fail to explain the observed warming. Conversely, poor model skill for seasonal precipitation suggests that other factors need to be considered to understand the sources of seasonal precipitation trends.


2020 ◽  
Author(s):  
Reinhard Schiemann ◽  
Panos Athanasiadis ◽  
David Barriopedro ◽  
Francisco Doblas-Reyes ◽  
Katja Lohmann ◽  
...  

Abstract. Global Climate Models (GCMs) are known to suffer from biases in the simulation of atmospheric blocking, and this study provides an assessment of how blocking is represented by the latest generation of GCMs. It is evaluated (i) how historical CMIP6 (Climate Model Intercomparison Project Phase 6) simulations perform compared to CMIP5 simulations, and (ii) how horizontal model resolution affects the simulation of blocking in the CMIP6-HighResMIP (PRIMAVERA) model ensemble, which is designed to address this type of question. Two blocking indices are used to evaluate the simulated mean blocking frequency and blocking persistence for the Euro-Atlantic and Pacific regions in winter and summer against the corresponding estimates from atmospheric reanalysis data. There is robust evidence that CMIP6 models simulate blocking frequency and persistence better than CMIP5 models in the Atlantic and Pacific and in winter and summer. This improvement is sizeable so that, for example, winter blocking frequency in the median CMIP5 model in a large Euro-Atlantic domain is underestimated by 32 % using the absolute geopotential height (AGP) blocking index, whereas the same number is 19 % for the median CMIP6 model. As for the sensitivity of simulated blocking to resolution, it is found that the resolution increase, from typically 100 km to 20 km grid spacing, in the PRIMAVERA models, which are not re-tuned at the higher resolutions, benefits the mean blocking frequency in the Atlantic in winter and summer, and in the Pacific in summer. Simulated blocking persistence, however, is not seen to improve with resolution. Our results are consistent with previous studies suggesting that resolution is one of a number of interacting factors necessary for an adequate simulation of blocking in GCMs. The improvements reported in this study hold promise for further reductions in blocking biases as model development continues.


2020 ◽  
Author(s):  
Hsi-Yen Ma ◽  
Chen Zhou ◽  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Mark D. Zelinka ◽  
...  

Abstract. We present a multi-year short-range hindcast experiment and its experiment procedure for better evaluating both the mean state and variability of atmospheric moist processes in climate models from diurnal to interannual time scales to facilitate model development. We use the Community Earth System Model version 1 as the based model and performed a suite of 3-day long hindcasts every day starting at 00Z from 1997 to 2012. Three processes – the diurnal cycle of clouds during different cloud regimes over the Central U.S., precipitation and diabatic heating associated with the Madden-Julian Oscillation propagation, and the response of moist processes to sea surface temperature anomalies associated with the El Niño-Southern Oscillation – are evaluated as examples to demonstrate how one can better utilize simulations from this experiment design to gain insights into model errors and their connection to physical parameterizations or large-scale state. This is achieved by comparing the hindcasts with corresponding long-term observations for periods based on different phenomena. These analyses can only be done through this multi-year hindcast approach to establish robust statistics of the processes under well-controlled large-scale environment. Furthermore, comparison of hindcasts to the typical simulations in climate mode with the same model allows one to infer what portion of a model’s climate error directly comes from fast errors in the parameterizations of moist processes. As demonstrated here, model biases in the mean state and variability associated parameterized moist processes usually develop within a few days, and manifest within weeks to affect the simulations of large-scale circulation and ultimately the climate mean state and variability. Therefore, model developers can achieve additional useful understanding of the underlying problems in model physics by conducting a multi-year hindcast experiment.


Sign in / Sign up

Export Citation Format

Share Document