scholarly journals A Numerical Study of the Impacts of Dry Air on Tropical Cyclone Formation: A Development Case and a Nondevelopment Case

2013 ◽  
Vol 70 (1) ◽  
pp. 91-111 ◽  
Author(s):  
Cody Fritz ◽  
Zhuo Wang

Abstract The impacts of dry air on tropical cyclone formation are examined in the numerical model simulations of ex-Gaston (2010) and pre-Fay (2008). The former, a remnant low downgraded from a short-lived tropical cyclone, can be regarded as a nondeveloping system because it failed to redevelop, and the latter developed into a tropical cyclone despite lateral dry air entrainment and a transient upper-level dry air intrusion. Water vapor budget analysis suggests that the mean vertical moisture transport plays the dominant role in moistening the free atmosphere. Backward trajectory analysis and water budget analysis show that vertical transport of dry air from the middle and upper troposphere, where a well-defined wave pouch is absent, contributes to the midlevel drying near the pouch center in ex-Gaston. The midlevel drying suppresses deep convection, reduces moisture supply from the boundary layer, and contributes to the nondevelopment of ex-Gaston. Three-dimensional trajectory analysis based on the numerical model simulation of Fay suggests that dry air entrained at the pouch periphery tends to stay off the pouch center because of the weak midlevel inflow or gets moistened along its path even if it is being wrapped into the wave pouch. Lateral entrainment in the middle troposphere thus does not suppress convection near the pouch center or prevent the development of Tropical Storm Fay. This study suggests that the upper troposphere is a weak spot of the wave pouch at the early formation stage and that the vertical transport is likely a more direct pathway for dry air to influence moist convection near the pouch center.

2013 ◽  
Vol 7 (1) ◽  
pp. 37-50
Author(s):  
Masanori Yamasaki

This paper describes results from numerical experiments which have been made toward a better understanding of tropical cyclone formation. This study uses a nonhydrostatic version of the author’s mesoscale-convection-resolving model that was developed in the 1980s to improve paramerization schemes of moist convection. In this study the horizontal grid size is taken to be 20 km in an area of 6,000 km x 3,000 km, and a non-uniform coarse grid is used in two areas to its north and south. Results from two numerical experiments are presented; one (case 1) without any environmental flow, and the other (case 2) with an easterly flow without low-level vertical shear. Three circular buoyancy perturbations are placed in the west-east direction at the initial time. Convection is initiated in the imposed latently unstable (positive CAPE) area. In both cases, a vortex with a pressure low is formed, and two band-shaped convective systems are formed to the north and the south of the vortex center. The vortex and two convective systems are oriented in the westsouthwest – eastnortheast direction, and their horizontal scales are nearly 2,000 km. In case 1, the band-shaped convective system on the southern side is stronger, and winds are stronger just to its south. In contrast, in case 2, the northern convective system is stronger, and winds are stronger just to its north. Therefore, the distributions of the equivalent potential temperature in the boundary layer and latent instability (positive buoyancy of the rising air) are also quite different between cases 1 and 2. The TC formation processes in these different cases are discussed, with an emphasis on the importance of examining the time change of latent instability field.


2013 ◽  
Vol 70 (12) ◽  
pp. 3859-3875 ◽  
Author(s):  
Xuyang Ge ◽  
Tim Li ◽  
Melinda Peng

Abstract A set of idealized experiments using the Weather Research and Forecasting model (WRF) were designed to investigate the impacts of a midlevel dry air layer, vertical shear, and their combined effects on tropical cyclone (TC) development. Compared with previous studies that focused on the relative radial position of dry air with no mean flow, it is found that the combined effect of dry air and environmental vertical shear can greatly affect TC development. Moreover, this study indicates the importance of dry air and vertical shear orientations in determining the impact. The background vertical shear causes the tilting of an initially vertically aligned vortex. The shear forces a secondary circulation (FSC) with ascent (descent) in the downshear (upshear) flank. Hence, convection tends to be favored on the downshear side. The FSC reinforced by the convection may overcome the shear-induced drifting and “restore” the vertical alignment. When dry air is located in the downshear-right quadrant of the initial vortex, the dry advection by cyclonic circulation brings the dry air to the downshear side and suppresses moist convection therein. Such a process disrupts the “restoring” mechanism associated with the FSC and thus inhibits TC development. The sensitivity experiments show that, for a fixed dry air condition, a marked difference occurs in TC development between an easterly and a westerly shear background.


2019 ◽  
Vol 76 (6) ◽  
pp. 1809-1826 ◽  
Author(s):  
Shuai Wang ◽  
Ralf Toumi

Abstract The impact of dry midlevel air on the outer circulation of tropical cyclones is investigated in idealized simulations with and without a moist envelope protecting the inner core. It is found that a dry midlevel layer away from the cyclone center can broaden the outer primary circulation and thus the overall destructive potential at both developing and mature stages. The midlevel outer drying enhances the horizontal gradient of latent heating in the rainbands and drives the expansion of the outer circulation. The moist convection at large radii is suppressed rapidly after the midlevel air is dried in the outer rainbands. An enhanced horizontal gradient of latent heating initiates a radial–vertical overturning circulation anomaly in the rainbands. This anomalous overturning circulation accelerates the radial inflow of the main secondary circulation, increases the angular momentum import, and thus increases the cyclone size. The dry air, mixed into the boundary layer from the midtroposphere, is “recharged” by high enthalpy fluxes because of the increased thermodynamical disequilibrium above the sea surface. This recharge process protects the eyewall convection from the environmental dry-air ventilation. The proposed mechanism may explain the continuous expansion in the tropical cyclone outer circulation after maturity, as found in observations.


2012 ◽  
Vol 69 (4) ◽  
pp. 1284-1305 ◽  
Author(s):  
Christopher A. Davis ◽  
David A. Ahijevych

Abstract Three well-observed Atlantic tropical weather systems that occurred during the 2010 hurricane season are analyzed. One case was former Tropical Storm Gaston that failed to redevelop into a tropical cyclone; the other two cases were developing storms Karl and Matthew. Geostationary satellite, multisensor-derived precipitation, and dropsondes from the National Science Foundation (NSF)–NCAR Gulfstream V (GV), NASA DC-8, and the NOAA Gulfstream IV (G-IV) and WP-3D Orion (P-3) aircraft are analyzed in a system-following frame to quantify the mesoscale dynamics of these systems. Gaston featured extensive dry air surrounding an initially moist core. Vertical shear forced a misalignment of midtropospheric and lower-tropospheric circulation centers. This misalignment allowed dry air to intrude above the lower-tropospheric center and severely limited the area influenced by deep moist convection, thus providing little chance of maintaining or rebuilding the vortex in sheared flow. By contrast, Karl and Matthew developed in a moister environment overall, with moisture increasing with time in the middle and upper troposphere. Deep moist convection was quasi-diurnal prior to genesis. For Karl, deep convection was initially organized away from the lower-tropospheric circulation center, creating a misalignment of the vortex. The vortex gradually realigned over several days and genesis followed this realignment within roughly one day. Matthew experienced weaker shear, was vertically aligned through most of its early evolution, and developed more rapidly than Karl. The evolutions of the three cases are interpreted in the context of recent theories of tropical cyclone formation.


Sign in / Sign up

Export Citation Format

Share Document