Coherent Structures in Large-Eddy Simulations of a Nonprecipitating Stratocumulus-Topped Boundary Layer

2017 ◽  
Vol 74 (12) ◽  
pp. 4117-4137 ◽  
Author(s):  
Paolo Davini ◽  
Fabio D’Andrea ◽  
Seung-Bu Park ◽  
Pierre Gentine

Abstract The properties of coherent convective structures are analyzed in a nonprecipitating marine nocturnal stratocumulus-topped boundary layer (STBL) with a series of high-resolution large-eddy simulations (LESs). A new classification method based on octant analysis—using vertical velocity and two passive scalars—is introduced to systematically define convective structures in both the cloudy and the cloud-free regions. It is therefore possible to detect and track updrafts, downdrafts, and their turbulent shells (both ascending and subsiding), together with the entraining air from the inversion layer or the free troposphere. The geometrical and thermodynamical characteristics (e.g., areal fraction, temperature, liquid and total water mixing ratio, buoyancy) of those structures are then accurately described, and particular attention is given to their respective contributions to the turbulent transport of mass, heat, and moisture. It is shown that updrafts, downdrafts, and entrainment are equally important to describe the STBL dynamics. Conversely, it is found that shells, although they partially contribute to the mass transport, have a negligible contribution to the turbulent fluxes of heat and moisture.

2015 ◽  
Vol 72 (2) ◽  
pp. 728-749 ◽  
Author(s):  
Pierre Gentine ◽  
Gilles Bellon ◽  
Chiel C. van Heerwaarden

Abstract The inversion layer (IL) of a clear-sky, buoyancy-driven convective boundary layer is investigated using large-eddy simulations covering a wide range of convective Richardson numbers. A new model of the IL is suggested and tested. The model performs better than previous first-order models of the entrainment and provides physical insights into the main controls of the mixed-layer and IL growths. A consistent prognostic equation of the IL growth is derived, with explicit dependence on the position of the minimum buoyancy flux, convective Richardson number, and relative stratification across the inversion G. The IL model expresses the interrelationship between the position and magnitude of the minimum buoyancy flux and inversion-layer depth. These relationships emphasize why zero-order jump models of the convective boundary layer perform well under a strong inversion and show that these models miss the additional parameter G to fully characterize the entrainment process under a weak inversion. Additionally, the position of the minimum buoyancy flux within the new IL model is shown to be a key component of convective boundary layer entrainment. The new IL model is sufficiently simple to be used in numerical weather prediction or general circulation models as a way to resolve the IL in a low-vertical-resolution model.


2012 ◽  
Vol 12 (23) ◽  
pp. 11319-11327 ◽  
Author(s):  
G. Chen ◽  
H. Xue ◽  
G. Feingold ◽  
X. Zhou

Abstract. This study investigates the vertical transport of a passive tracer in a shallow cumulus boundary layer using large eddy simulations. The tracer source is at the surface in one case, and in the inversion layer in the other case. Results show that shallow cumulus clouds can significantly enhance vertical transport of the tracer in both cases. In the case with surface-borne pollutants, cloudy regions are responsible for the upward transport, due to the intense updrafts in cumulus clouds. In the case where pollutants are aloft, cloud-free regions are responsible for the downward transport, but the downward transport mainly occurs in thin regions around cloud edges. This is consistent with previous aircraft measurements of downdrafts around cumulus clouds and indicates that the downward transport is also cloud-induced. Cumulus convection is therefore able to both vent pollutants upward from the surface and fumigate pollutants in the inversion layer downward into the lower boundary layer.


2012 ◽  
Vol 12 (5) ◽  
pp. 11391-11413
Author(s):  
G. Chen ◽  
H. Xue ◽  
G. Feingold ◽  
X. Zhou

Abstract. This study investigates the vertical transport of a passive tracer in a shallow cumulus boundary layer using large eddy simulations. The tracer source is at the surface in one case, and in the inversion layer in the other case. Results show that shallow cumulus clouds can significantly enhance vertical transport of the tracer in both cases. In the case with surface-borne pollutants, cloudy regions are responsible for the upward transport, due to the intense updrafts in cumulus clouds. In the case where pollutants are aloft, cloud-free regions are responsible for the downward transport, but the downward transport mainly occurs in thin regions around cloud edges. This is consistent with previous aircraft measurements of downdrafts around cumulus clouds and indicates that the downward transport is also cloud-induced. We also preformed cloud-free sensitivity runs for the two cases. Results show that this dry convection can neither transport the surface-borne pollutants into the inversion layer, nor transport pollutants from the inversion layer downward to the lower boundary layer. Cumulus convection is therefore more effective than dry convection at venting pollutants upward from the surface, and fumigating pollutants in the inversion layer downward into the lower boundary layer.


2020 ◽  
Vol 1618 ◽  
pp. 062038
Author(s):  
Lawrence C. Cheung ◽  
Colleen M. Kaul ◽  
Alan S. Hsieh ◽  
Myra L. Blaylock ◽  
Matthew J. Churchfield

2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2015 ◽  
Vol 72 (5) ◽  
pp. 2033-2040 ◽  
Author(s):  
Mohamed S. Ghonima ◽  
Joel R. Norris ◽  
Thijs Heus ◽  
Jan Kleissl

Abstract A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document