scholarly journals Heating and Moistening of the MJO during DYNAMO in ECMWF Reforecasts

2018 ◽  
Vol 75 (5) ◽  
pp. 1429-1452 ◽  
Author(s):  
Ji-Eun Kim ◽  
Chidong Zhang ◽  
George N. Kiladis ◽  
Peter Bechtold

Reforecasts produced by the ECMWF Integrated Forecast System (IFS) were used to study heating and moistening processes associated with three MJO events over the equatorial Indian Ocean during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Variables produced by and derived from the IFS reforecast (IFS-RF) agree reasonably well with observations over the DYNAMO sounding arrays, and they vary smoothly from the western to eastern equatorial Indian Ocean. This lends confidence toward using IFS-RF as a surrogate of observations over the equatorial Indian Ocean outside the DYNAMO arrays. The apparent heat source Q1 and apparent moisture sink Q2 produced by IFS are primarily generated by parameterized cumulus convection, followed by microphysics and radiation. The vertical growth of positive Q1 and Q2 associated with the progression of MJO convection can be gradual, stepwise, or rapid depending on the event and its location over the broader equatorial Indian Ocean. The time for convective heating and drying to progress from shallow (800 hPa) to deep (400 hPa) can be <1 to 6 days. This growth time of heating and drying is usually short for convective processes alone but becomes longer when additional microphysical processes, such as evaporative moistening below convective and stratiform clouds, are in play. Three ratios are calculated to measure the possible role of radiative feedback in the MJO events: amplitudes of radiative versus convective heating rates, changes in radiative versus convective heating rates, and diabatic (with and without the radiative component) versus adiabatic heating rates. None of them unambiguously distinguishes the MJO from non-MJO convective events.

2020 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Krishnaswamy Krishnamoorthy ◽  
Sreedharan Krishnakumari Satheesh ◽  
Mukunda M. Gogoi ◽  
...  

Abstract. Regional climatic implications of aerosol black carbon (BC) are well recognized over South Asia, which has a wide variety of anthropogenic sources in a large abundance. Significant uncertainties remain in its quantification due to lack of sufficient information on the microphysical properties (its concentration, size, and mixing state with other aerosol components), which determine the absorption potential of BC. Especially the information on mixing state of BC is extremely sparse over this region. In this study, first-ever observations of the size distribution and mixing state of individual refractory black carbon (rBC) particles in the south Asian outflow to Southeastern Arabian Sea, northern and equatorial Indian Ocean regions are presented based on measurements using a single particle soot photometer (SP2) aboard the ship cruise of the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB-2018) during winter-2018 (16 January to 13 February). The results revealed significant spatial heterogeneity of BC characteristics. Highest rBC mass concentrations (~ 938 ± 293 ng m−3) with the highest relative coating thickness (RCT; the ratio of BC core to its coating diameters) of ~ 2.16 ± 0.19 are found over the Southeast Arabian Sea (SEAS) region, which is in the proximity of the continental outflow. As we move to farther oceanic regions, though the mass concentrations decreased by nearly half (~ 546 ± 80 ng m−3), BC still remained thickly coated (RCT ~ 2.05 ± 0.07). The air over the remote equatorial Indian Ocean, which received considerable marine air masses compared to the other regions, showed the lowest rBC mass concentrations (~ 206 ± 114 ng m−3), with a moderately thick coating (RCT ~ 1.73 ± 0.16). Even over oceanic regions far from the landmass, regions which received the outflow from more industrialized east coast/the Bay of Bengal had thicker coating (~ 104 nm) compared to regions that received outflow from the west coast/peninsular India (~ 86 nm). Although different regions of the ocean depicted contrasting concentrations and mixing state parameters due to varying extent and nature of the continental outflow as well as the atmospheric lifetime of air masses, the modal parameters of rBC mass-size distributions were similar over all the regions. The observed mono-modal distribution with mean mass median diameters (MMD) in the range of 0.19–0.20 μm suggested mixed sources of BC. The mean fraction of BC containing particles (FBC) varied in the range 0.20–0.28 (suggesting significant amounts of non-BC particles), whereas the bulk mixing ratio of coating mass to rBC mass was highest (8.77 ± 2.77) over the outflow regions compared to the remote ocean (4.29 ± 1.54) highlighting the role of outflow in providing condensable material for coating on rBC. These parameters, along with the information on size-resolved mixing state of BC cores, throw light on the role of sources and secondary processing of their complex mixtures for coating on BC under highly polluted conditions. Examination of the non-refractory sub-micrometre aerosol chemical composition obtained using the aerosol chemical speciation monitor (ACSM) suggested that the overall aerosol system was sulfate dominated over the far-oceanic regions. In contrast, organics were equally prominent adjacent to the coastal landmass. Association between the BC mixing state and aerosol chemical composition suggested that sulfate was the probable dominant coating material on rBC cores.


2019 ◽  
Vol 38 (6) ◽  
pp. 83-91 ◽  
Author(s):  
Chao Yuan ◽  
Zongjun Xu ◽  
Xuelei Zhang ◽  
Qinsheng Wei ◽  
Huiwu Wang ◽  
...  

Author(s):  
Tomomichi Ogata ◽  
Hideharu Sasaki ◽  
V. S. N. Murty ◽  
M. S. S. Sarma ◽  
Yukio Masumoto

2009 ◽  
Vol 22 (4) ◽  
pp. 1014-1036 ◽  
Author(s):  
Markus Stowasser ◽  
H. Annamalai ◽  
Jan Hafner

Abstract Recent diagnostics with the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), coupled model’s twentieth-century simulations reveal that this particular model demonstrates skill in capturing the mean and variability associated with the South Asian summer monsoon precipitation. Motivated by this, the authors examine the future projections of the mean monsoon and synoptic systems in this model’s simulations in which quadrupling of CO2 concentrations are imposed. In a warmer climate, despite a weakened cross-equatorial flow, the time-mean precipitation over peninsular parts of India increases by about 10%–15%. This paradox is interpreted as follows: the increased precipitation over the equatorial western Pacific forces an anomalous descending circulation over the eastern equatorial Indian Ocean, the two regions being connected by an overturning mass circulation. The spatially well-organized anomalous precipitation over the eastern equatorial Indian Ocean forces twin anticyclones as a Rossby wave response in the lower troposphere. The southern component of the anticyclone opposes and weakens the climatological cross-equatorial monsoon flow. The patch of easterly anomalies centered in the southern Arabian Sea is expected to deepen the thermocline north of the equator. Both these factors limit the coastal upwelling along Somalia, resulting in local sea surface warming and eventually leading to a local maximum in evaporation over the southern Arabian Sea. It is shown that changes in SST are predominantly responsible for the increase in evaporation over the southern Arabian Sea. The diagnostics suggest that in addition to the increased CO2-induced rise in temperature, evaporation, and atmospheric moisture, local circulation changes in the monsoon region further increase SST, evaporation, and atmospheric moisture, leading to increased rainfall over peninsular parts of India. This result implies that accurate observation of SST and surface fluxes over the Indian Ocean is of urgent need to understand and monitor the response of the monsoon in a warming climate. To understand the regional features of the rainfall changes, the International Pacific Research Center (IPRC) Regional Climate Model (RegCM), with three different resolution settings (0.5° × 0.5°, 0.75° × 0.75°, and 1.0° × 1.0°), was integrated for 20 yr, with lateral and lower boundary conditions taken from the GFDL model. The RegCM solutions confirm the major results obtained from the GFDL model but also capture the orographic nature of monsoon precipitation and regional circulation changes more realistically. The hypothesis that in a warmer climate, an increase in troposphere moisture content favors more intense monsoon depressions is tested. The GFDL model does not reveal any changes, but solutions from the RegCM suggest a statistically significant increase in the number of storms that have wind speeds of 15–20 m s−1 or greater, depending on the resolution employed. Based on these regional model solutions a possible implication is that in a CO2-richer climate an increase in the number of flood days over central India can be expected. The model results obtained here, though plausible, need to be taken with caution since even in this “best” model systematic errors still exist in simulating some aspects of the tropical and monsoon climates.


2010 ◽  
Vol 70 (3-4) ◽  
pp. 272-282 ◽  
Author(s):  
S. Sardessai ◽  
Suhas Shetye ◽  
M.V. Maya ◽  
K.R. Mangala ◽  
S. Prasanna Kumar

2020 ◽  
Author(s):  
Iyyappan Suresh ◽  
Jerome Vialard ◽  
Matthieu Lengaigne ◽  
Takeshi Izumo ◽  
Muraleedharan Pillathu Moolayil

&lt;p&gt;Remote wind forcing plays a strong role in the Northern Indian Ocean, where oceanic anomalies can travel long distances within the coastal waveguide. Previous studies for instance emphasized that remote equatorial forcing is the main driver of the sea level and currents intraseasonal variability along the west coast of India (WCI). Until now, the main pathway for this connection between the equatorial and coastal waveguides was thought to occur in the eastern equatorial Indian Ocean, through coastal Kelvin waves that propagate around the Bay of Bengal rim and then around Sri Lanka to the WCI. Using a linear, continuously stratified ocean model, the present study demonstrates that two other mechanisms in fact dominate. First, the equatorial waveguide also intersects the coastal waveguide at the southern tip of India and Sri Lanka, creating a direct connection between the equator and WCI. Rossby waves reflected from the eastern equatorial Indian Ocean boundary indeed have a sufficiently wide meridional scale to induce a pressure signal at the Sri Lankan coast, which eventually propagates to the WCI as a coastal Kelvin wave. Second, local wind variations in the vicinity of Sri Lanka generate strong intraseasonal signals, which also propagate to the WCI along the same path. Sensitivity experiments indicate that these two new mechanisms (direct equatorial connection and local wind variations near Sri Lanka) dominate the WCI intraseasonal sea level variability, with the &amp;#8220;classical&amp;#8221; pathway around the Bay of Bengal only coming next. Other contributions (Bay of Bengal forcing, local WCI forcing) are much weaker.&lt;/p&gt;&lt;p&gt;We further show that the direct connection between the equatorial waveguide and WCI is negligible at seasonal timescale, but not at interannual timescales where it contributes to the occurrence of anoxic events. By providing an improved understanding of the mechanisms that control the WCI thermocline and oxycline variability, our results could have socio-economic implications for regional fisheries and ecosystems.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document