scholarly journals Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers. Part II: Regime Occupation and Transition Statistics and the Influence of External Drivers

2019 ◽  
Vol 76 (11) ◽  
pp. 3485-3504 ◽  
Author(s):  
Carsten Abraham ◽  
Adam H. Monahan

Abstract In a companion paper hidden Markov model (HMM) analyses have been conducted to classify the nocturnal stably stratified boundary layer (SBL) into weakly stable (wSBL) and very stable (vSBL) conditions at different tower sites on the basis of long-term Reynolds-averaged mean data. The resulting HMM regime sequences allow analysis of long-term (climatological) SBL regime statistics. In particular, statistical features of very persistent wSBL and vSBL nights, in which a single regime lasts for the entire night, are contrasted with those of nights with SBL regime transitions. The occurrence of very persistent nights is seasonally dependent and more likely in homogeneous surroundings than in regions with complex terrain. When transitions occur, their timing is not seasonally dependent, but transitions are enhanced close to sunset (for land-based sites). The regime event durations depict remarkably similar distributions across all stations with peaks in transition likelihood approximately 1–2 h after a preceding transition. At Cabauw in the Netherlands, very persistent wSBL and vSBL nights are usually accompanied by overcast conditions with strong geostrophic winds Ugeo or clear-sky conditions with weak Ugeo, respectively. In contrast, SBL regime transitions can neither be linked to magnitudes in Ugeo and cloud coverage nor to specific tendencies in Ugeo. However, regime transitions can be initiated by changes in low-level cloud cover.

2013 ◽  
Vol 31 (5) ◽  
pp. 795-804 ◽  
Author(s):  
X. Xia

Abstract. This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954–2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954–2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30–60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.


After shading a light on the extraterrestrial solar radiation in the chapter 3 it is important to evaluate the global terrestrial solar radiation and its components. The information on terrestrial solar radiation is required in several different forms depending on the kinds of calculations and kind of application that are to be done. Of course, terrestrial solar radiation on the horizontal plane depends on the different weather conditions such as cloud cover, relative humidity, and ambient temperature. Therefore, the impact of the atmosphere on solar radiation should be considered. One of the most important points of terrestrial solar radiation evaluation is its determination during clear sky conditions. Therefore, in this chapter, the equations that determine the air mass basing on available theories are given and the clear sky conditions are introduced with shading a light on the previous work in identifying clear sky conditions. Taking into consideration that, clear sky solar radiation estimation is of great importance for solar tracking, a detailed review of main available models is given in this chapter. As daily, monthly, seasonally, biannually and yearly mean daily solar radiations are required information for designing and installing long term tracking systems, different available methods are commented regarding their applicability for the estimation of solar radiation information in the desired format from the data that are available. An important accent is paid also on the assessment and comparison of monthly mean daily solar radiation estimation models.


2016 ◽  
Author(s):  
Lubna Dada ◽  
Pauli Paasonen ◽  
Tuomo Nieminen ◽  
Stephany Buenrostro Mazon ◽  
Jenni Kontkanen ◽  
...  

Abstract. New particle formation (NPF) events have been observed all around the world and are known to be a major source of atmospheric aerosol particles. Here we combine 20 years of observations in a boreal forest at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations) in Hyytiälä, Finland, by utilizing previously accumulated knowledge, and by focusing on clear-sky (non-cloudy) conditions. We first investigated the effect of cloudiness on NPF and then compared the NPF event and non-event days during clear-sky conditions. In this comparison we considered, for example, the effects of calculated particle formation rates, condensation sink, trace gas concentrations and various meteorological quantities. The formation rate of 1.5 nm particles was calculated by using proxies for gaseous sulfuric acid and oxidized products of low volatile organic compounds. As expected, our results indicate an increase in the frequency of NPF events under clear-sky conditions. Also, focusing on clearsky conditions enabled us to find a clear separation of many variables related to NPF. For instance, oxidized organic vapors showed higher concentration during the clear-sky NPF event days, whereas the condensation sink (CS) and some trace gases had higher concentrations during the non-event days. The calculated formation rate of 3 nm particles showed a notable difference between the NPF event and non-event days during clear-sky conditions, especially in winter and spring. For spring time, we are able to find a threshold value for the combined values of ambient temperature and CS, above which practically no clear-sky NPF event could be observed. Finally, we present a probability distribution for the frequency of NPF events at a specific CS and temperature.


2018 ◽  
Vol 10 (10) ◽  
pp. 1651 ◽  
Author(s):  
Bikhtiyar Ameen ◽  
Heiko Balzter ◽  
Claire Jarvis ◽  
Etienne Wey ◽  
Claire Thomas ◽  
...  

Several sectors need global horizontal irradiance (GHI) data for various purposes. However, the availability of a long-term time series of high quality in situ GHI measurements is limited. Therefore, several studies have tried to estimate GHI by re-analysing climate data or satellite images. Validation is essential for the later use of GHI data in the regions with a scarcity of ground-recorded data. This study contributes to previous studies that have been carried out in the past to validate HelioClim-3 version 5 (HC3v5) and the Copernicus Atmosphere Monitoring Service, using radiation service version 3 (CRSv3) data of hourly GHI from satellite-derived datasets (SDD) with nine ground stations in northeast Iraq, which have not been used previously. The validation is carried out with station data at the pixel locations and two other data points in the vicinity of each station, which is something that is rarely seen in the literature. The temporal and spatial trends of the ground data are well captured by the two SDDs. Correlation ranges from 0.94 to 0.97 in all-sky and clear-sky conditions in most cases, while for cloudy-sky conditions, it is between 0.51–0.72 and 0.82–0.89 for the clearness index. The bias is negative for most of the cases, except for three positive cases. It ranges from −7% to 4%, and −8% to 3% for the all-sky and clear-sky conditions, respectively. For cloudy-sky conditions, the bias is positive, and differs from one station to another, from 16% to 85%. The root mean square error (RMSE) ranges between 12–20% and 8–12% for all-sky and clear-sky conditions, respectively. In contrast, the RMSE range is significantly higher in cloudy-sky conditions: above 56%. The bias and RMSE for the clearness index are nearly the same as those for the GHI for all-sky conditions. The spatial variability of hourly GHI SDD differs only by 2%, depending on the station location compared to the data points around each station. The variability of two SDDs is quite similar to the ground data, based on the mean and standard deviation of hourly GHI in a month. Having station data at different timescales and the small number of stations with GHI records in the region are the main limitations of this analysis.


2017 ◽  
Author(s):  
Pauline Martinet ◽  
Domenico Cimini ◽  
Francesco De Angelis ◽  
Guylaine Canut ◽  
Vinciane Unger ◽  
...  

Abstract. A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims at investigating how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWR continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 hours during two intensive observation periods (IOP). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errorswere observed for most transparent channels (i.e., 51–52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54–58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square-error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch very well deep nearsurface temperature inversions. Larger errors were observed in cloudy conditions due to difficulty of ground-based MWR to resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of the retrievals in cloudy conditions and below 1000 m in clear-sky was observed. From this study, we can conclude that MWR are expected to bring valuable information into NWP models up to 3 km altitude both in clear-sky and cloudy-sky conditions with the maximum improvement found around 500 m. With an accuracy between 0.5 and 1 K in RMSE, our study has also proved MWR to be capable of resolving deep near-surface temperature inversions observed in complex terrain during highly stable boundary layer conditions.


2011 ◽  
Vol 11 (7) ◽  
pp. 3281-3289 ◽  
Author(s):  
J. Xu ◽  
C. Li ◽  
H. Shi ◽  
Q. He ◽  
L. Pan

Abstract. This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.


2019 ◽  
Vol 184 (3-4) ◽  
pp. 474-478 ◽  
Author(s):  
D Kikaj ◽  
T Kovács ◽  
J Vaupotič

Abstract The outdoor radon concentration was monitored together with the meteorological parameters at two contrasting complex topographies: sub-Alpine basin (SA) and sub-Mediterranean valley (SM) in winter (December 2017–February 2018) and summer (June–August 2018). The time series for each site and each season are evaluated in three different ways: (i) clear-sky and cloudy condition together, (ii) clear-sky conditions only (cloud cover <20%) and (iii) cloudy condition only (cloud cover >20%), and compared to the expected atmospheric boundary layer (ABL) ‘mixing volume’ caused by meteorological changes. The results have confirmed the sensitivity of diurnal and seasonal radon concentration to the expected ABL ‘mixing volume’ at the two selected sites. The relationship is more pronounced in calm clear-sky conditions. Cloudy conditions are associated with fast weather changes, when the ABL is well mixed and hourly mean radon concentrations do not follow the typical diurnal trend.


2019 ◽  
Vol 32 (18) ◽  
pp. 5901-5913 ◽  
Author(s):  
Su Yang ◽  
Xiaolan L. Wang ◽  
Martin Wild

AbstractThis paper presents a study on long-term surface solar radiation (SSR) changes over China under clear- and all-sky conditions and analyzes the causes of the “dimming” and “brightening.” To eliminate the nonclimatic signals in the historical records, the daily SSR dataset was first homogenized using quantile-matching (QM) adjustment. The results reveal rapid dimming before 2000 not only under all-sky conditions, but also under clear-sky conditions, at a decline rate of −9.7 ± 0.4 W m−2 decade−1 (1958–99). This is slightly stronger than that under all-sky conditions at −7.4 ± 0.4 W m−2 decade−1, since the clear-sky dimming stopped 15 years later. A rapid “wettening” of about 40-Pa surface water vapor pressure (SWVP) from 1985 to 2000 was found over China. It contributed 2.2% to the SSR decline under clear-sky conditions during the whole dimming period (1958–99). Therefore, water vapor cannot be the main cause of the long-term dimming in China. After a stable decade (1999–2008), an intensive brightening appeared under the clear-sky conditions at a rate of 10.6 ± 2.0 W m−2 decade−1, whereas a much weaker brightening (−0.8 ± 3.1 W m−2 decade−1) has been observed under all-sky conditions between 2008 and 2016. The remarkable divergence between clear- and all-sky trends in recent decades indicates that the clouds played two opposite roles in the SSR changes during the past 30 years, by compensating for the declining SSR under the cloud-free conditions in 1985–99 and by counteracting the increasing SSR under cloud-free conditions in 2008–16. Aerosols remain as the main cause of dimming and brightening over China in the last 60 years, although the clouds counteract the effects of aerosols after 2000.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 857
Author(s):  
Derrick Kwadwo Danso ◽  
Sandrine Anquetin ◽  
Arona Diedhiou ◽  
Rabani Adamou

In West Africa (WA), interest in solar energy development has risen in recent years with many planned and ongoing projects currently in the region. However, a major drawback to this development in the region is the intense cloud cover that reduces the incoming solar radiation when present and causes fluctuations in solar power production. Therefore, understanding the occurrence of clouds and their link to the surface solar radiation in the region is important for making plans to manage future solar energy production. In this study, we use the state-of-the-art European Centre for Medium-range Weather Forecasts ReAnalysis (ERA5) dataset to examine the occurrence and persistence of cloudy and clear-sky conditions in the region. Then, we investigate the effects of cloud cover on the quantity and variability of the incoming solar radiation. The cloud shortwave radiation attenuation (CRASW↓) is used to quantify the amount of incoming solar radiation that is lost due to clouds. The results showed that the attenuation of incoming solar radiation is stronger in all months over the southern part of WA near the Guinea Coast. Across the whole region, the maximum attenuation occurs in August, with a mean CRASW↓ of about 55% over southern WA and between 20% and 35% in the Sahelian region. Southern WA is characterized by a higher occurrence of persistent cloudy conditions, while the Sahel region and northern WA are associated with frequent clear-sky conditions. Nonetheless, continuous periods with extremely low surface solar radiation were found to be few over the whole region. The analysis also showed that the surface solar radiation received from November to April only varies marginally from one year to the other. However, there is a higher uncertainty during the core of the monsoon season (June to October) with regard to the quantity of incoming solar radiation. The results obtained show the need for robust management plans to ensure the long-term success of solar energy projects in the region.


2017 ◽  
Vol 10 (9) ◽  
pp. 3385-3402 ◽  
Author(s):  
Pauline Martinet ◽  
Domenico Cimini ◽  
Francesco De Angelis ◽  
Guylaine Canut ◽  
Vinciane Unger ◽  
...  

Abstract. A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWRs continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine an MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 h during two intensive observation periods (IOPs). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errors were observed for most transparent channels (i.e., 51–52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54–58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch deep near-surface temperature inversions very well. Larger errors were observed in cloudy conditions due to the difficulty of ground-based MWRs to resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of the retrievals in cloudy conditions and below 1000 m in clear-sky conditions was observed. From this study, we can conclude that MWRs are expected to bring valuable information into numerical weather prediction models up to 3 km in altitude both in clear-sky and cloudy-sky conditions with the maximum improvement found around 500 m. With an accuracy between 0.5 and 1 K in RMSE, our study has also proven that MWRs are capable of resolving deep near-surface temperature inversions observed in complex terrain during highly stable boundary layer conditions.


Sign in / Sign up

Export Citation Format

Share Document