scholarly journals Toward Cloud Tomography from Space Using MISR and MODIS: Locating the “Veiled Core” in Opaque Convective Clouds

2021 ◽  
Vol 78 (1) ◽  
pp. 155-166
Author(s):  
Linda Forster ◽  
Anthony B. Davis ◽  
David J. Diner ◽  
Bernhard Mayer

AbstractFor passive satellite imagers, current retrievals of cloud optical thickness and effective particle size fail for convective clouds with 3D morphology. Indeed, being based on 1D radiative transfer (RT) theory, they work well only for horizontally homogeneous clouds. A promising approach for treating clouds as fully 3D objects is cloud tomography, which has been demonstrated for airborne observations. However, more efficient forward 3D RT solvers are required for cloud tomography from space. Here, we present a path forward by acknowledging that optically thick clouds have “veiled cores” (VCs). Sunlight scattered into and out of this deep region does not contribute significant information about the inner structure of the cloud to the spatially detailed imagery. We investigate the VC location for the MISR and MODIS imagers. While MISR provides multiangle imagery in the visible and near-infrared (IR), MODIS includes channels in the shortwave IR, albeit at a single view angle. This combination will enable future 3D retrievals to disentangle the cloud’s effective particle size and extinction fields. We find that, in practice, the VC is located at an optical distance of ~5, starting from the cloud boundary along the line of sight. For MODIS’s absorbing wavelengths the VC covers a larger volume, starting at smaller optical distances. This concept will not only lead to a reduction in the number of unknowns for the tomographic reconstruction but also significantly increase the speed and efficiency of the 3D RT solver at the heart of the algorithm by applying, say, the photon diffusion approximation inside the VC.

2011 ◽  
Vol 50 (11) ◽  
pp. 2283-2297 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
...  

AbstractA computationally efficient radiative transfer model (RTM) is developed for the inference of ice cloud optical thickness and effective particle size from satellite-based infrared (IR) measurements and is aimed at potential use in operational cloud-property retrievals from multispectral satellite imagery. The RTM employs precomputed lookup tables to simulate the top-of-the-atmosphere (TOA) radiances (or brightness temperatures) at 8.5-, 11-, and 12-μm bands. For the clear-sky atmosphere, the optical thickness of each atmospheric layer resulting from gaseous absorption is derived from the correlated-k-distribution method. The cloud reflectance, transmittance, emissivity, and effective temperature are precomputed using the Discrete Ordinate Radiative Transfer model (DISORT). For an atmosphere containing a semitransparent ice cloud layer with a visible optical thickness τ smaller than 5, the TOA brightness temperature differences (BTDs) between the fast model and the more rigorous DISORT results are less than 0.1 K, whereas the BTDs are less than 0.01 K if τ is larger than 10. With the proposed RTM, the cloud optical and microphysical properties are retrieved from collocated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in conjunction with the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data. Comparisons between the retrieved ice cloud properties (optical thickness and effective particle size) based on the present IR fast model and those from the Aqua/MODIS operational collection-5 cloud products indicate that the IR retrievals are smaller. A comparison between the IR-retrieved ice water path (IWP) and CALIOP-retrieved IWP shows robust agreement over most of the IWP range.


2013 ◽  
Vol 750-752 ◽  
pp. 1113-1116 ◽  
Author(s):  
Xue Bing Hu ◽  
Yun Yu ◽  
Jian Er Zhou ◽  
Li Xin Song

During graphene oxide separation process, the effects of the process parameters such as centrifugal separation time and ultrasonic treatment time on the particle size distribution of graphene oxide aqueous dispersion were studied. The results show graphene oxide has the narrower particle size distribution and the smaller nominal effective particle size with increasing the centrifugal separation time from 20 min to 160 min. And there is a critical time in the ultrasonic treatment to obtain the narrower particle size distribution and smaller nominal effective particle size of graphene oxide. Graphene oxide has the narrower particle size distribution and the smaller nominal effective particle size when the ultrasonic treatment time is 4 h.


Sign in / Sign up

Export Citation Format

Share Document