scholarly journals Low-level Updraft Intensification in Response to Environmental Wind Profiles

Author(s):  
Nicholas A. Goldacker ◽  
Matthew D. Parker

AbstractSupercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity (ωs) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ωs, a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s–1, vertical vorticity by up to 0.2 s–1, and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ωs exceeded 110 m2 s–2 and 0.015 s–1, respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ωs correspond to greater tornado probabilities.

2018 ◽  
Vol 146 (8) ◽  
pp. 2667-2693 ◽  
Author(s):  
Brice E. Coffer ◽  
Matthew D. Parker

Abstract Previous work has suggested that the lower-tropospheric wind profile may partly determine whether supercells become tornadic. If tornadogenesis within the VORTEX2 composite environments is more sensitive to the lower-tropospheric winds than to either the upper-tropospheric winds or the thermodynamic profile, then systematically varying the lower-tropospheric wind profile might reveal a “tipping point” between nontornadic and tornadic supercells. As a test, simulated supercells are initiated in environments that have been gradually interpolated between the low-level wind profiles of the nontornadic and tornadic VORTEX2 supercell composites while also interchanging the upper-tropospheric winds and thermodynamic profile. Simulated supercells become tornadic when the low-level wind profile incorporates at least 40% of the structure from the tornadic VORTEX2 composite environment. Both the nontornadic and tornadic storms have similar outflow temperatures and availability of surface vertical vorticity near their updrafts. Most distinctly, a robust low-level mesocyclone and updraft immediately overlie the intensifying near-surface circulation in each of the tornadic supercells. The nontornadic supercells have low-level updrafts that are disorganized, with pockets of descent throughout the region where surface vertical vorticity resides. The lower-tropospheric wind profile drives these distinct configurations of the low-level mesocyclone and updraft, regardless of the VORTEX2 composite upper-tropospheric wind profile or thermodynamic profile. This study therefore supports a potentially useful, robust link between the probability of supercell tornadogenesis and the lower-tropospheric wind profile, with tornadogenesis more (less) likely when the orientation of horizontal vorticity in the lowest few hundred meters is streamwise (crosswise).


2019 ◽  
Vol 76 (5) ◽  
pp. 1349-1372 ◽  
Author(s):  
Matthew Brown ◽  
Christopher J. Nowotarski

Abstract This paper reports on results of idealized numerical simulations testing the influence of low-level humidity, and thus lifting condensation level (LCL), on the morphology and evolution of low-level rotation in supercell thunderstorms. Previous studies have shown that the LCL can influence outflow buoyancy, which can in turn affect generation and stretching of near-surface vertical vorticity. A less explored hypothesis is tested: that the LCL affects the relative positioning of near-surface circulation and the overlying mesocyclone, thus influencing the dynamic lifting and intensification of near-surface vertical vorticity. To test this hypothesis, a set of three base-state thermodynamic profiles with varying LCLs are implemented and compared over a variety of low-level wind profiles. The thermodynamic properties of the simulations are sensitive to variations in the LCL, with higher LCLs contributing to more negatively buoyant cold pools. These outflow characteristics allow for a more forward propagation of near-surface circulation relative to the midlevel mesocyclone. When the mid- and low-level mesocyclones become aligned with appreciable near-surface circulation, favorable dynamic updraft forcing is able to stretch and intensify this rotation. The strength of the vertical vorticity generated ultimately depends on other interrelated factors, including the amount of near-surface circulation generated within the cold pool and the buoyancy of storm outflow. However, these simulations suggest that mesocyclone alignment with near-surface circulation is modulated by the ambient LCL, and is a necessary condition for the strengthening of near-surface vertical vorticity. This alignment is also sensitive to the low-level wind profile, meaning that the LCL most favorable for the formation of intense vorticity may change based on ambient low-level shear properties.


2015 ◽  
Vol 143 (7) ◽  
pp. 2795-2816 ◽  
Author(s):  
Matthew D. Parker ◽  
Johannes M. L. Dahl

Abstract This study uses an idealized heat sink to examine the possible roles of the wind profile in modulating the production of surface vertical vorticity by a downdraft. The basic vorticity evolution in these idealized simulations is consistent with previous work: the process is primarily baroclinic and produces near-ground vertical vorticity within the outflow. Sensitivity experiments affirm that the only fundamental requirement for downdrafts to produce surface vertical vorticity is the existence of ambient downdraft-relative flow. Vertical vorticity production increases monotonically as the low-level downdraft-relative flow increases from zero up through intermediate values (in these experiments, 10–15 m s−1), followed by a monotonic decrease for greater values. This sensitivity has to do with the degree of cooling acquired by parcels as they pass through the idealized heat sink as well as the degree to which horizontal vorticity vectors subsequently attain an orientation that is normal to isosurfaces of vertical velocity. Although the addition of vertical wind shear is not directly helpful to surface vertical vorticity production in these simulations, increased realism of outflow structure is attained in hodographs with ambient streamwise vorticity. Furthermore, the necessary condition of flow through a region of downdraft forcing would in nature probably require the existence of ambient vertical shear. Therefore, shear in the lower troposphere has a possibly important indirect role in modulating the initial production of near-ground rotation.


Author(s):  
Jonathan M. Garner ◽  
William C. Iwasko ◽  
Tyler D. Jewel ◽  
Richard L. Thompson ◽  
Bryan T. Smith

AbstractA dataset maintained by the Storm Prediction Center (SPC) of 6300 tornado events from 2009–2015, consisting of radar-identified convective modes and near-storm environmental information obtained from Rapid Update Cycle and Rapid Refresh model analysis grids, has been augmented with additional radar information related to the low-level mesocyclones associated with tornado longevity, path-length, and width. All EF2–EF5 tornadoes, in addition to randomly selected EF0–EF1 tornadoes, were extracted from the SPC dataset, which yielded 1268 events for inclusion in the current study. Analysis of that data revealed similar values of the effective-layer significant tornado parameter for the longest-lived (60+ min) tornadic circulations, longest-tracked (≥ 68 km) tornadoes, and widest tornadoes (≥ 1.2 km). However, the widest tornadoes occurring west of –94° longitude were associated with larger mean-layer convective available potential energy, storm-top divergence, and low-level rotational velocity. Furthermore, wide tornadoes occurred when low-level winds were out of the southeast resulting in large low-level hodograph curvature and near-surface horizontal vorticity that was more purely streamwise compared to long-lived and long-tracked events. On the other hand, tornado path-length and longevity were maximized with eastward migrating synoptic-scale cyclones associated with strong southwesterly wind profiles through much of the troposphere, fast storm motions, large values of bulk wind difference and storm-relative helicity, and lower buoyancy.


2016 ◽  
Vol 145 (1) ◽  
pp. 149-180 ◽  
Author(s):  
Brice E. Coffer ◽  
Matthew D. Parker

Abstract The composite near-storm environments of nontornadic and tornadic supercells sampled during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) both appear to be generally favorable for supercells and tornadoes. It has not been clear whether small differences between the two environments (e.g., more streamwise horizontal vorticity in the lowest few hundred meters above the ground in the tornadic composite) are actually determinative of storms’ tornadic potential. From the VORTEX2 composite environments, simulations of a nontornadic and a tornadic supercell are used to investigate storm-scale differences that ultimately favor tornadogenesis or tornadogenesis failure. Both environments produce strong supercells with robust midlevel mesocyclones and hook echoes, though the tornadic supercell has a more intense low-level updraft and develops a tornado-like vortex exceeding the EF3 wind speed threshold. In contrast, the nontornadic supercell only produces shallow vortices, which never reach the EF0 wind speed threshold. Even though the nontornadic supercell readily produces subtornadic surface vortices, these vortices fail to be stretched by the low-level updraft. This is due to a disorganized low-level mesocyclone caused by predominately crosswise vorticity in the lowest few hundred meters above ground level within the nontornadic environment. In contrast, the tornadic supercell ingests predominately streamwise horizontal vorticity, which promotes a strong low-level mesocyclone with enhanced dynamic lifting and stretching of surface vertical vorticity. These results support the idea that larger streamwise vorticity leads to a more intense low-level mesocyclone, whereas predominately crosswise vorticity yields a less favorable configuration of the low-level mesocyclone for tornadogenesis.


2013 ◽  
Vol 71 (1) ◽  
pp. 243-275 ◽  
Author(s):  
Paul M. Markowski ◽  
Yvette P. Richardson

Abstract Idealized, dry simulations are used to investigate the roles of environmental vertical wind shear and baroclinic vorticity generation in the development of near-surface vortices in supercell-like “pseudostorms.” A cyclonically rotating updraft is produced by a stationary, cylindrical heat source imposed within a horizontally homogeneous environment containing streamwise vorticity. Once a nearly steady state is achieved, a heat sink, which emulates the effects of latent cooling associated with precipitation, is activated on the northeastern flank of the updraft at low levels. Cool outflow emanating from the heat sink spreads beneath the updraft and leads to the development of near-surface vertical vorticity via the “baroclinic mechanism,” as has been diagnosed or inferred in actual supercells that have been simulated and observed. An intense cyclonic vortex forms in the simulations in which the environmental low-level wind shear is strong and the heat sink is of intermediate strength relative to the other heat sinks tested. Intermediate heat sinks result in the development (baroclinically) of substantial near-surface circulation, yet the cold pools are not excessively strong. Moreover, the strong environmental low-level shear lowers the base of the midlevel mesocyclone, which promotes strong dynamic lifting of near-surface air that previously resided in the heat sink. The superpositioning of the dynamic lifting and circulation-rich, near-surface air having only weak negative buoyancy facilitates near-surface vorticity stretching and vortex genesis. An intense cyclonic vortex fails to form in simulations in which the heat sink is excessively strong or weak or if the low-level environmental shear is weak.


2019 ◽  
Vol 76 (7) ◽  
pp. 1865-1884 ◽  
Author(s):  
Ke Peng ◽  
Richard Rotunno ◽  
George H. Bryan ◽  
Juan Fang

Abstract In a previous study, the authors showed that the intensification process of a numerically simulated axisymmetric tropical cyclone (TC) can be divided into two periods denoted by “phase I” and “phase II.” The intensification process in phase II can be qualitatively described by Emanuel’s intensification theory in which the angular momentum (M) and saturated entropy (s*) surfaces are congruent in the TC interior. During phase I, however, the M and s* surfaces evolve from nearly orthogonal to almost congruent, and thus, the intensifying simulated TC has a different physical character as compared to that found in phase II. The present work uses a numerical simulation to investigate the evolution of an axisymmetric TC during phase I. The present results show that sporadic, deep convective annular rings play an important role in the simulated axisymmetric TC evolution in phase I. The convergence in low-level radial (Ekman) inflow in the boundary layer of the TC vortex, together with the increase of near-surface s* produced by sea surface fluxes, leads to episodes of convective rings around the TC center. These convective rings transport larger values of s* and M from the lower troposphere upward to the tropopause; the locally large values of M associated with the convective rings cause a radially outward bias in the upper-level radial velocity and an inward bias in the low-level radial velocity. Through a repetition of this process, the pattern (i.e., phase II) gradually emerges. The role of internal gravity waves related to the episodes of convection and the TC intensification process during phase I is also discussed.


2017 ◽  
Vol 145 (11) ◽  
pp. 4605-4625 ◽  
Author(s):  
Brice E. Coffer ◽  
Matthew D. Parker ◽  
Johannes M. L. Dahl ◽  
Louis J. Wicker ◽  
Adam J. Clark

Despite an increased understanding of the environments that favor tornado formation, a high false-alarm rate for tornado warnings still exists, suggesting that tornado formation could be a volatile process that is largely internal to each storm. To assess this, an ensemble of 30 supercell simulations was constructed based on small variations to the nontornadic and tornadic environmental profiles composited from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). All simulations produce distinct supercells despite occurring in similar environments. Both the tornadic and nontornadic ensemble members possess ample subtornadic surface vertical vorticity; the determinative factor is whether this vorticity can be converged and stretched by the low-level updraft. Each of the 15 members in the tornadic VORTEX2 ensemble produces a long-track, intense tornado. Although there are notable differences in the precipitation and near-surface buoyancy fields, each storm features strong dynamic lifting of surface air with vertical vorticity. This lifting is due to a steady low-level mesocyclone, which is linked to the ingestion of predominately streamwise environmental vorticity. In contrast, each nontornadic VORTEX2 simulation features a supercell with a disorganized low-level mesocyclone, due to crosswise vorticity in the lowest few hundred meters in the nontornadic environment. This generally leads to insufficient dynamic lifting and stretching to accomplish tornadogenesis. Even so, 40% of the nontornadic VORTEX2 ensemble members become weakly tornadic. This implies that chaotic within-storm details can still play a role and, occasionally, lead to marginally tornadic vortices in suboptimal storms.


2017 ◽  
Vol 98 (1) ◽  
pp. 45-68 ◽  
Author(s):  
Leigh Orf ◽  
Robert Wilhelmson ◽  
Bruce Lee ◽  
Catherine Finley ◽  
Adam Houston

Abstract Tornadoes are among nature’s most destructive forces. The most violent, long-lived tornadoes form within supercell thunderstorms. Tornadoes ranked EF4 and EF5 on the Enhanced Fujita scale that exhibit long paths are the least common but most damaging and deadly type of tornado. In this article we describe an ultra-high-resolution (30-m gridpoint spacing) simulation of a supercell that produces a long-track tornado that exhibits instantaneous near-surface storm-relative winds reaching as high as 143 m s−1. The computational framework that enables this work is described, including the Blue Waters supercomputer, the CM1 cloud model, a data management framework built around the HDF5 scientific data format, and the VisIt and Vapor visualization tools. We find that tornadogenesis occurs in concert with processes not clearly seen in previous supercell simulations, including the consolidation of numerous vortices and vorticity patches along the storm’s forward-flank downdraft boundary and the intensification of a feature we call a streamwise vorticity current (SVC), a current of horizontal vorticity that is tilted upward into the storm’s low-level mesocyclone. The SVC is found throughout the genesis and much of the maintenance phase of the tornado, where it appears to help drive the storm’s vigorous low-level updraft. We compare stages of the storm’s maintenance phase to observations. We find that tornado decay occurs rapidly throughout the depth of the tornado and is associated with a weakening of the SVC and the development of a strong rainy downdraft that encircles the tornado, which has moved rearward into the storm’s cold pool.


2012 ◽  
Vol 69 (2) ◽  
pp. 538-559 ◽  
Author(s):  
Matthew D. Parker

Abstract Adiabatic lapse rates appear to be a common feature in the lower troposphere on tornado days. This article reviews physical reasons why lapse rates may influence surface vortex intensification and reports on numerical simulations designed to study the key processes. In the idealized numerical model, an initial mesocyclone-like vortex and nonvarying convection-like heat source are used in different environmental stability profiles. The scales of interest in these simulations typify those of a parent supercell, and the developing circulations constitute direct responses to the imposed heating. Downward parcel displacements are needed for surface vortex development in environments with no preexisting surface vorticity. In the simulations, under neutral stratification there is strong heating-induced subsidence anchored near the storm edge, whereas under stable stratification there are instead gravity waves that propagate away to the far field. In addition, under weak or neutral low-level stratification there is very little resistance to downward parcel displacements. In the simulations, these two effects combine to bring high angular momentum air from aloft downward to the surface under neutral lapse rates; this in turn leads to surface vortex genesis, even without precipitation processes. When the lower troposphere is stable, surface vortex intensification is only simulated when there is already preexisting vertical vorticity at the ground. When the initial vortex is elevated (vertical vorticity falls off to zero above the ground), surface vortex intensification is only simulated under neutral low-level stability. The results are interpreted within the controlled experimental framework, after which the possible ramifications to processes in real storms are discussed.


Sign in / Sign up

Export Citation Format

Share Document