negative buoyancy
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Pengfei Li ◽  
Min Sun ◽  
Tserendash Narantsetseg ◽  
Fred Jourdan ◽  
Wanwan Hu ◽  
...  

To understand the origin of curved subduction zones has been one of the major challenges in plate tectonics. The Mongol-Okhotsk Orogen in Central Asia is characterized by the development of a U-shaped oroclinal structure that was accompanied by the continuous subduction of the Mongol-Okhotsk oceanic plate. Therefore, it provides a natural laboratory to understand why and how a subduction system became tightly curved. In this study, we provide the first structural observation around the hinge of the Mongolian Orocline (the Zag zone in Central Mongolia), with an aim to constrain the oroclinal geometry and to link hinge zone structures with the origin of the orocline. Our results show that rocks in the Zag zone are characterized by the occurrence of a penetrative foliation that is commonly subparallel to bedding. Both bedding and dominant fabric in the Zag zone are steeply dipping, and their strike orientations in a map view follow a simple curve around the hinge of the Mongolian Orocline, thus providing the first structural constraint for 3D geometry of the orocline. A secondary penetrative fabric parallel to the axial plane of the orocline was not observed, indicating a low degree of orogen-parallel shortening during oroclinal bending. Combining with available geological and geophysical data, we conclude that the Mongolian Orocline was developed in a period of Permian to Jurassic, and its origin was linked to the subduction of the Mongol-Okhotsk oceanic slab. We consider that the low-strain oroclinal bending likely resulted from the along-strike variation in trench retreat, which was either triggered by the negative buoyancy of the Mongol-Okhotsk oceanic slab, or driven by the relative rotation of the Siberian and North China cratons. Our results shed a light on 3D geometry and geodynamic mechanisms of large-scale oroclinal bending in an accretionary orogen.


2021 ◽  
pp. petgeo2021-074
Author(s):  
S.A. Stewart

Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structure varies with basin type and may not be fully identified due to truncation effects arising from data coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects, however, the multiscale nature of synformal traps should be considered when estimating range of storage volumes.This article is part of the Energy Geoscience Series available at https://www.lyellcollection.org/cc/energy-geoscience-series


Author(s):  
Nannan Qin ◽  
Liguang Wu ◽  
Qingyuan Liu

AbstractPrevious studies have focused on the formation and maintenance of spiral rainbands in the secondary eyewall formation (SEF) of tropical cyclones (TCs). However, the evolution of the moat, a region with weak precipitation separating spiral rainbands from the inner eyewall, is also essential for the SEF. In this study, a semi-idealized numerical experiment is conducted to understand the SEF by focusing on the evolution of the moat. In the simulated TC, a secondary eyewall forms around 32 h, and then intensifies and replaces the inner eyewall at 46 h.It is found that the occurrence and subsequent evolution of the moat in the simulated TC are closely associated with the inner-eyewall structure. As the eyewall updraft becomes strong and the eyewall anvil is well developed, the upper-level inflow develops below the eyewall anvil in response to the diabatic warming in the eyewall anvil. The warming-induced inflow causes a drying effect and promotes the sublimation cooling below the anvil, inducing strong subsidence between the inner eyewall and the spiral rainband through the resulting negative buoyancy. Moreover, the resulting subsidence is enhanced by the compensated downward motion in the outer edge of the inner eyewall. Further analysis indicates that the rapidly decreasing vertical shear of environmental wind and the rapid filamentation zone outside the inner eyewall also play important role in the axisymmetrization of the rainband and the moat subsidence. Our results demonstrate that an intense inner eyewall with a wide upper-level anvil is favorable for the SEF in an environment with decreasing vertical wind shear.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11797
Author(s):  
David J. Peterman ◽  
Kathleen A. Ritterbush

Measuring locomotion tactics available to ancient sea animals can link functional morphology with evolution and ecology over geologic timescales. Externally-shelled cephalopods are particularly important for their central roles in marine trophic exchanges, but most fossil taxa lack sufficient modern analogues for comparison. In particular, phylogenetically diverse cephalopods produced orthoconic conchs (straight shells) repeatedly through time. Persistent re-evolution of this morphotype suggests that it possesses adaptive value. Practical lateral propulsion is ruled out as an adaptive driver among orthoconic cephalopods due to the stable, vertical orientations of taxa lacking sufficient counterweights. However, this constraint grants the possibility of rapid (or at least efficient) vertical propulsion. We experiment with this form of movement using 3D-printed models of Baculites compressus, weighted to mimic hydrostatic properties inferred by virtual models. Furthermore, model buoyancy was manipulated to impart simulated thrust within four independent scenarios (Nautilus-like cruising thrust; a similar thrust scaled by the mantle cavity of Sepia; sustained peak Nautilus-like thrust; and passive, slightly negative buoyancy). Each model was monitored underwater with two submerged cameras as they rose/fell over ~2 m, and their kinematics were computed with 3D motion tracking. Our results demonstrate that orthocones require very low input thrust for high output in movement and velocity. With Nautilus-like peak thrust, the model reaches velocities of 1.2 m/s (2.1 body lengths per second) within one second starting from a static initial condition. While cephalopods with orthoconic conchs likely assumed a variety of life habits, these experiments illuminate some first-order constraints. Low hydrodynamic drag inferred by vertical displacement suggests that vertical migration would incur very low metabolic cost. While these cephalopods likely assumed low energy lifestyles day-to-day, they may have had a fighting chance to escape from larger, faster predators by performing quick, upward dodges. The current experiments suggest that orthocones sacrifice horizontal mobility and maneuverability in exchange for highly streamlined, vertically-stable, upwardly-motile conchs.


2021 ◽  
Author(s):  
Lifei Zhang ◽  
Yang Wang ◽  
Zhong-Hai Li

Abstract According to the plate tectonics theory, continental crust (CC), especially the felsic upper and middle continental crust (UCC and MCC), cannot subduct due to its buoyancy. Therefore, most, if not all, of the felsic crustal mass will be preserved in continental collision zones or eroded by the surface process. Consequently, the continent-continent convergence is generally slower and more short-lived than oceanic plate subduction. However, the long-duration, fast convergence, and imbalance of crustal mass in the India-Asia collisional system challenge the classical rules of plate tectonics. Systematic compilation and calculations indicate ~20-47% of the felsic crust in Greater India is missing during collision. Based on the phase equilibria modeling and density calculations, we explore the pressure-temperature-dependent density evolutions of UCC and MCC and demonstrate they are denser than the surrounding mantle at P >7-8 GPa when the phase transition from coesite to stishovite occurs. The phase equilibria induced density evolution is further integrated into the thermo-mechanical model, which confirm the deep subduction of Greater Indian continent with its felsic UCC and MCC. Analytical studies of the slab-pull forces in the subduction zone indicate the Greater Indian continent can subduct spontaneously under its own negative buoyancy when it is dragged to a depth of ~170 km by the preceding oceanic slab. The great slab-pull force, induced by the negative buoyancy of UCC and MCC below 170 km, not only contributes to the long-lasting fast convergence between India and Asia, but also explains the crustal mass imbalance during the Himalayan orogeny.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 856
Author(s):  
Ishita Shrivastava ◽  
Edward Eric Adams ◽  
Bader Al-Anzi ◽  
Aaron Chunghin Chow ◽  
Jongyoon Han

Confined plunging jets are investigated as potential outfalls for the discharge of desalination brine. Compared to offshore submerged outfalls that rely on momentum to induce mixing, plunging jets released above the water surface utilize both momentum and negative buoyancy. Plunging jets also introduce air into the water column, which can reduce the possibility of hypoxic zones. In contrast to unconfined plunging jets, confined plunging jets include a confining tube, or downcomer, around the jet, which increases the penetration depth of the bubbles and can provide better aeration. However, the presence of this downcomer can hinder mixing with surrounding water. Therefore, laboratory measurements of dilution are reported here and compared to the dilution of unconfined plunging jets. In addition, qualitative observations of bubble penetration depth are also used to discuss aeration potential. For designs that increase the bubble penetration depth as compared to unconfined plunging jets, results show that dilution decreases as the depth of the downcomer is increased. However, it is shown that confined plunging jets can be designed with a short downcomer to provide higher dilution than unconfined jets. The effect of the diameter of downcomer on dilution is also investigated and a non-monotonic effect is observed.


2021 ◽  
Vol 33 (5) ◽  
pp. 055103
Author(s):  
Fabio Addona ◽  
Luca Chiapponi ◽  
Renata Archetti

Author(s):  
Charles M. Kuster ◽  
Barry R. Bowers ◽  
Jacob T. Carlin ◽  
Terry J. Schuur ◽  
Jeff W. Brogden ◽  
...  

AbstractDecades of research has investigated processes that contribute to downburst development, as well as identified precursor radar signatures that can accompany these events. These advancements have increased downburst predictability, but downbursts still pose a significant forecast challenge, especially in low-shear environments that produce short-lived single and multicell thunderstorms. Additional information provided by dual-polarization radar data may prove useful in anticipating downburst development. One such radar signature is the KDP core, which can indicate processes such as melting and precipitation loading that increase negative buoyancy and can result in downburst development. Therefore, KDP cores associated with 81 different downbursts across 10 states are examined to explore if this signature could provide forecasters with a reliable and useable downburst precursor signature. KDP core characteristics near the environmental melting layer, vertical gradients of KDP, and environmental conditions were quantified to identify any differences between downbursts of varying intensities. The analysis shows that 1) KDP cores near the environmental melting layer are a reliable signal that a downburst will develop, 2) while using KDP cores to anticipate an impending downburst’s intensity is challenging, larger KDP near the melting layer and larger vertical gradients of KDP are more commonly associated with strong downbursts than weak ones, 3) downbursts occurring in environments with less favorable conditions for downbursts are associated with higher magnitude KDP cores, and 4) KDP cores evolve relatively slowly (typically longer than 15 min), which makes them easily observable with the 5-min volumetric updates currently provided by operational radars.


2021 ◽  
Author(s):  
Ana M. Negredo ◽  
Carlos Clemente ◽  
Eugenio Carminati ◽  
Ivone Jiménez-Munt ◽  
Jaume Vergés ◽  
...  

<p>A number or previous studies indicate the possibility of post-collisional continental delamination in the northern Apennines. In this study we investigate by means of thermo-mechanical modelling the conditions for, and consequences of, delamination postdating continental subduction in this region. The modelled cross-section strikes approximately from Corsica to the Adriatic Sea. The initial model setup simulates the scenario at ca 20 Ma, where the oceanic lithosphere of the westward-subducting Adria plate was entirely consumed and some amount of continental subduction also occurred. The negative buoyancy of the slab remnant, together with the low viscosity of the dragged down lower continental crust, promote lithospheric mantle sinking into the mantle and asthenospheric upwelling and its lateral expansion along the lower crust. Consistent with geological data, the compressional front produced by delamination migrates about 260 km eastwards, causing a similar migrating pattern of extension from the northern Tyrrhenian Sea, to Tuscany and the seismogenically active Apennines backbone. The topographic response is computed by means of a true free-surface approach, and reflects the same eastward migrating pattern of uplift caused by asthenospheric inflow in the internal part of the system and crustal thickening; and subsidence at the front caused by the negative buoyancy of the sinking Adria slab. The conditions for the occurrence of magmatism and high heat flow beneath Tuscany are also explored. Simulations resulting in fast migration of the delamination front predict slab necking and breakoff, which could be consistent with the slab window observed beneath the central Apennines. Subcrustal seismicity beneath the Northern Apennines can be interpreted as the result to this incipient slab necking. This is a GeoCAM contribution (PGC2018-095154-B-I00)</p>


Sign in / Sign up

Export Citation Format

Share Document