An Environmental Study on Tornado Path-Length, Longevity, and Width

Author(s):  
Jonathan M. Garner ◽  
William C. Iwasko ◽  
Tyler D. Jewel ◽  
Richard L. Thompson ◽  
Bryan T. Smith

AbstractA dataset maintained by the Storm Prediction Center (SPC) of 6300 tornado events from 2009–2015, consisting of radar-identified convective modes and near-storm environmental information obtained from Rapid Update Cycle and Rapid Refresh model analysis grids, has been augmented with additional radar information related to the low-level mesocyclones associated with tornado longevity, path-length, and width. All EF2–EF5 tornadoes, in addition to randomly selected EF0–EF1 tornadoes, were extracted from the SPC dataset, which yielded 1268 events for inclusion in the current study. Analysis of that data revealed similar values of the effective-layer significant tornado parameter for the longest-lived (60+ min) tornadic circulations, longest-tracked (≥ 68 km) tornadoes, and widest tornadoes (≥ 1.2 km). However, the widest tornadoes occurring west of –94° longitude were associated with larger mean-layer convective available potential energy, storm-top divergence, and low-level rotational velocity. Furthermore, wide tornadoes occurred when low-level winds were out of the southeast resulting in large low-level hodograph curvature and near-surface horizontal vorticity that was more purely streamwise compared to long-lived and long-tracked events. On the other hand, tornado path-length and longevity were maximized with eastward migrating synoptic-scale cyclones associated with strong southwesterly wind profiles through much of the troposphere, fast storm motions, large values of bulk wind difference and storm-relative helicity, and lower buoyancy.

2020 ◽  
Vol 33 (19) ◽  
pp. 8339-8365 ◽  
Author(s):  
Funing Li ◽  
Daniel R. Chavas ◽  
Kevin A. Reed ◽  
Daniel T. Dawson II

AbstractSevere local storm (SLS) activity is known to occur within specific thermodynamic and kinematic environments. These environments are commonly associated with key synoptic-scale features—including southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones—that link the large-scale climate to SLS environments. This work analyzes spatiotemporal distributions of both extreme values of SLS environmental parameters and synoptic-scale features in the ERA5 reanalysis and in the Community Atmosphere Model, version 6 (CAM6), historical simulation during 1980–2014 over North America. Compared to radiosondes, ERA5 successfully reproduces SLS environments, with strong spatiotemporal correlations and low biases, especially over the Great Plains. Both ERA5 and CAM6 reproduce the climatology of SLS environments over the central United States as well as its strong seasonal and diurnal cycles. ERA5 and CAM6 also reproduce the climatological occurrence of the synoptic-scale features, with the distribution pattern similar to that of SLS environments. Compared to ERA5, CAM6 exhibits a high bias in convective available potential energy over the eastern United States primarily due to a high bias in surface moisture and, to a lesser extent, storm-relative helicity due to enhanced low-level winds. Composite analysis indicates consistent synoptic anomaly patterns favorable for significant SLS environments over much of the eastern half of the United States in both ERA5 and CAM6, though the pattern differs for the southeastern United States. Overall, our results indicate that both ERA5 and CAM6 are capable of reproducing SLS environments as well as the synoptic-scale features and transient events that generate them.


2015 ◽  
Vol 72 (6) ◽  
pp. 2507-2524 ◽  
Author(s):  
Russ S. Schumacher

Abstract Using a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%–1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.


2018 ◽  
Vol 146 (8) ◽  
pp. 2667-2693 ◽  
Author(s):  
Brice E. Coffer ◽  
Matthew D. Parker

Abstract Previous work has suggested that the lower-tropospheric wind profile may partly determine whether supercells become tornadic. If tornadogenesis within the VORTEX2 composite environments is more sensitive to the lower-tropospheric winds than to either the upper-tropospheric winds or the thermodynamic profile, then systematically varying the lower-tropospheric wind profile might reveal a “tipping point” between nontornadic and tornadic supercells. As a test, simulated supercells are initiated in environments that have been gradually interpolated between the low-level wind profiles of the nontornadic and tornadic VORTEX2 supercell composites while also interchanging the upper-tropospheric winds and thermodynamic profile. Simulated supercells become tornadic when the low-level wind profile incorporates at least 40% of the structure from the tornadic VORTEX2 composite environment. Both the nontornadic and tornadic storms have similar outflow temperatures and availability of surface vertical vorticity near their updrafts. Most distinctly, a robust low-level mesocyclone and updraft immediately overlie the intensifying near-surface circulation in each of the tornadic supercells. The nontornadic supercells have low-level updrafts that are disorganized, with pockets of descent throughout the region where surface vertical vorticity resides. The lower-tropospheric wind profile drives these distinct configurations of the low-level mesocyclone and updraft, regardless of the VORTEX2 composite upper-tropospheric wind profile or thermodynamic profile. This study therefore supports a potentially useful, robust link between the probability of supercell tornadogenesis and the lower-tropospheric wind profile, with tornadogenesis more (less) likely when the orientation of horizontal vorticity in the lowest few hundred meters is streamwise (crosswise).


2017 ◽  
Vol 146 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Bruno Z. Ribeiro ◽  
Lance F. Bosart

Abstract This study presents a climatological and composite analysis of elevated mixed layers (EMLs) in South and North America derived from the NCEP Climate Forecast System Reanalysis. The EMLs are identified based on objective criteria applied to the reanalysis data. Composite analyses of synoptic-scale conditions and severe weather parameters associated with spring EML cases are presented. EMLs are more frequent immediately to the east of the Andes and the Rockies. The North American EMLs form by surface heating over the higher terrain of the Rockies, with peak frequency occurring in spring and summer. EMLs in South America are generated by differential temperature advection due to ageostrophic circulations east of the Andes, as indicated by the temperature lapse rate tendency equation, which relates to the higher frequency of EMLs during the cold season in South America. EMLs over North America are about 100 hPa lower than over South America due to the lower height of the Rockies in comparison to the Andes. The synoptic conditions associated with EMLs in South and North America are characterized by an upper-level trough upstream and low-level moisture flux convergence due to poleward-directed flow, favoring synoptic-scale ascent poleward of the EML location, where the convective inhibition is relatively low. When EMLs occur, higher surface-based convective available potential energy and low-level storm-relative helicity, in association with lower lifting condensation level heights observed in North America, indicate that surface-based supercell storms and tornadoes are more likely to occur on this continent in comparison with South America, corroborating observations.


2019 ◽  
Vol 76 (5) ◽  
pp. 1349-1372 ◽  
Author(s):  
Matthew Brown ◽  
Christopher J. Nowotarski

Abstract This paper reports on results of idealized numerical simulations testing the influence of low-level humidity, and thus lifting condensation level (LCL), on the morphology and evolution of low-level rotation in supercell thunderstorms. Previous studies have shown that the LCL can influence outflow buoyancy, which can in turn affect generation and stretching of near-surface vertical vorticity. A less explored hypothesis is tested: that the LCL affects the relative positioning of near-surface circulation and the overlying mesocyclone, thus influencing the dynamic lifting and intensification of near-surface vertical vorticity. To test this hypothesis, a set of three base-state thermodynamic profiles with varying LCLs are implemented and compared over a variety of low-level wind profiles. The thermodynamic properties of the simulations are sensitive to variations in the LCL, with higher LCLs contributing to more negatively buoyant cold pools. These outflow characteristics allow for a more forward propagation of near-surface circulation relative to the midlevel mesocyclone. When the mid- and low-level mesocyclones become aligned with appreciable near-surface circulation, favorable dynamic updraft forcing is able to stretch and intensify this rotation. The strength of the vertical vorticity generated ultimately depends on other interrelated factors, including the amount of near-surface circulation generated within the cold pool and the buoyancy of storm outflow. However, these simulations suggest that mesocyclone alignment with near-surface circulation is modulated by the ambient LCL, and is a necessary condition for the strengthening of near-surface vertical vorticity. This alignment is also sensitive to the low-level wind profile, meaning that the LCL most favorable for the formation of intense vorticity may change based on ambient low-level shear properties.


Author(s):  
Nicholas A. Goldacker ◽  
Matthew D. Parker

AbstractSupercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity (ωs) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ωs, a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s–1, vertical vorticity by up to 0.2 s–1, and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ωs exceeded 110 m2 s–2 and 0.015 s–1, respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ωs correspond to greater tornado probabilities.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 567
Author(s):  
Zuohao Cao ◽  
Huaqing Cai ◽  
Guang J. Zhang

Even with ever-increasing societal interest in tornado activities engendering catastrophes of loss of life and property damage, the long-term change in the geographic location and environment of tornado activity centers over the last six decades (1954–2018), and its relationship with climate warming in the U.S., is still unknown or not robustly proved scientifically. Utilizing discriminant analysis, we show a statistically significant geographic shift of U.S. tornado activity center (i.e., Tornado Alley) under warming conditions, and we identify five major areas of tornado activity in the new Tornado Alley that were not identified previously. By contrasting warm versus cold years, we demonstrate that the shift of relative warm centers is coupled with the shifts in low pressure and tornado activity centers. The warm and moist air carried by low-level flow from the Gulf of Mexico combined with upward motion acts to fuel convection over the tornado activity centers. Employing composite analyses using high resolution reanalysis data, we further demonstrate that high tornado activities in the U.S. are associated with stronger cyclonic circulation and baroclinicity than low tornado activities, and the high tornado activities are coupled with stronger low-level wind shear, stronger upward motion, and higher convective available potential energy (CAPE) than low tornado activities. The composite differences between high-event and low-event years of tornado activity are identified for the first time in terms of wind shear, upward motion, CAPE, cyclonic circulation and baroclinicity, although some of these environmental variables favorable for tornado development have been discussed in previous studies.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.


1982 ◽  
Vol 72 (5) ◽  
pp. 1707-1715
Author(s):  
Frand Wyatt ◽  
Kent Beckstrom ◽  
Jon Berger

abstract An instrument has been developed to monitor the horizontal displacement of near-surface monuments, so as to reduce the noise of observatory-based strain measurements. The device measures the shear strain in the upper 24 m of the earth's crust using an equal path length Michelson interferometer. The magnitude of the observations (∼50 μm) indicates that such measurements are needed to interpret the records produced by precision strainmeters.


Author(s):  
Evan S. Bentley ◽  
Richard L. Thompson ◽  
Barry R. Bowers ◽  
Justin G. Gibbs ◽  
Steven E. Nelson

AbstractPrevious work has considered tornado occurrence with respect to radar data, both WSR-88D and mobile research radars, and a few studies have examined techniques to potentially improve tornado warning performance. To date, though, there has been little work focusing on systematic, large-sample evaluation of National Weather Service (NWS) tornado warnings with respect to radar-observable quantities and the near-storm environment. In this work, three full years (2016–2018) of NWS tornado warnings across the contiguous United States were examined, in conjunction with supporting data in the few minutes preceding warning issuance, or tornado formation in the case of missed events. The investigation herein examines WSR-88D and Storm Prediction Center (SPC) mesoanalysis data associated with these tornado warnings with comparisons made to the current Warning Decision Training Division (WDTD) guidance.Combining low-level rotational velocity and the significant tornado parameter (STP), as used in prior work, shows promise as a means to estimate tornado warning performance, as well as relative changes in performance as criteria thresholds vary. For example, low-level rotational velocity peaking in excess of 30 kt (15 m s−1), in a near-storm environment which is not prohibitive for tornadoes (STP > 0), results in an increased probability of detection and reduced false alarms compared to observed NWS tornado warning metrics. Tornado warning false alarms can also be reduced through limiting warnings with weak (<30 kt), broad (>1nm) circulations in a poor (STP=0) environment, careful elimination of velocity data artifacts like sidelobe contamination, and through greater scrutiny of human-based tornado reports in otherwise questionable scenarios.


Sign in / Sign up

Export Citation Format

Share Document