Impact of Explicit Atmosphere–Ocean Coupling on MJO-Like Coherent Structures in Idealized Aquaplanet Simulations

2006 ◽  
Vol 63 (9) ◽  
pp. 2289-2306 ◽  
Author(s):  
Wojciech W. Grabowski

Abstract This paper discusses the impact of the atmosphere–ocean coupling on the large-scale organization of tropical convection simulated by an idealized global model applying the Cloud-Resolving Convection Parameterization (CRCP; superparameterization). Because the organization resembles the Madden–Julian Oscillation (MJO), the results contribute to the debate concerning the role of atmosphere–ocean coupling in tropical intraseasonal oscillations. The modeling setup is an aquaplanet with globally uniform mean sea surface temperature (SST) of 30°C (tropics everywhere) in radiative–convective quasi equilibrium. The simulations apply an interactive radiation transfer model and a slab ocean model with a fixed oceanic mixed layer depth. Results from several 80- and 100-day-long simulations are discussed, where the only difference between the simulations is the prescribed oceanic mixed layer depth, which varied from 5 to 45 m. A simulation with a very deep oceanic mixed layer is also performed to represent constant-SST conditions. The simulations demonstrate that the interactive SST impedes the development of large-scale organization and has insignificant impact on the dynamics of mature MJO-like systems. The impediment is the result of a negative feedback between the large-scale organization of convection and SST, the convection–SST feedback. In this feedback, SST increases in regions of already suppressed convection and decreases in regions with enhanced convection, thus hindering the large-scale organization. Once developed, however, the MJO-like systems are equally strong in interactive and constant-SST simulations, and compare favorably with the observed MJO. The above impacts of the atmosphere–ocean coupling contradict the majority of previous studies using traditional general circulation models, where, typically, an enhancement of the intraseasonal signal occurs compared to prescribed-SST simulations. An explanation of this discrepancy is suggested.

2020 ◽  
Vol 50 (6) ◽  
pp. 1625-1641
Author(s):  
Taimoor Sohail ◽  
Bishakhdatta Gayen ◽  
Andrew McC. Hogg

AbstractOpen-ocean convection is a common phenomenon that regulates mixed layer depth and ocean ventilation in the high-latitude oceans. However, many climate model simulations overestimate mixed layer depth during open-ocean convection, resulting in excessive formation of dense water in some regions. The physical processes controlling transient mixed layer depth during open-ocean convection are examined using two different numerical models: a high-resolution, turbulence-resolving nonhydrostatic model and a large-scale hydrostatic ocean model. An isolated destabilizing buoyancy flux is imposed at the surface of both models and a quasi-equilibrium flow is allowed to develop. Mixed layer depth in the turbulence-resolving and large-scale models closely aligns with existing scaling theories. However, the large-scale model has an anomalously deep mixed layer prior to quasi-equilibrium. This transient mixed layer depth bias is a consequence of the lack of resolved turbulent convection in the model, which delays the onset of baroclinic instability. These findings suggest that in order to reduce mixed layer biases in ocean simulations, parameterizations of the connection between baroclinic instability and convection need to be addressed.


2008 ◽  
Vol 21 (20) ◽  
pp. 5254-5270 ◽  
Author(s):  
Gilles Bellon ◽  
Adam H. Sobel ◽  
Jerome Vialard

Abstract A simple coupled model is used in a zonally symmetric aquaplanet configuration to investigate the effect of ocean–atmosphere coupling on the Asian monsoon intraseasonal oscillation. The model consists of a linear atmospheric model of intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model of the upper ocean. This model has one unstable eigenmode with a period in the 30–60-day range and a structure similar to the observed northward-propagating intraseasonal oscillation in the Bay of Bengal/west Pacific sector. The ocean–atmosphere coupling is shown to have little impact on either the growth rate or latitudinal structure of the atmospheric oscillation, but it reduces the oscillation’s period by a quarter. At latitudes corresponding to the north of the Indian Ocean, the sea surface temperature (SST) anomalies lead the precipitation anomalies by a quarter of a period, similarly to what has been observed in the Bay of Bengal. The mixed layer depth is in phase opposition to the SST: a monsoon break corresponds to both a warming and a shoaling of the mixed layer. This behavior results from the similarity between the patterns of the predominant processes: wind-induced surface heat flux and wind stirring. The instability of the seasonal monsoon flow is sensitive to the seasonal mixed layer depth: the oscillation is damped when the oceanic mixed layer is thin (about 10 m deep or thinner), as in previous experiments with several models aimed at addressing the boreal winter Madden–Julian oscillation. This suggests that the weak thermal inertia of land might explain the minima of intraseasonal variance observed over the Asian continent.


2008 ◽  
Vol 38 (12) ◽  
pp. 2704-2721 ◽  
Author(s):  
Michael A. Spall

Abstract The issue of downwelling resulting from surface buoyancy loss in boundary currents is addressed using a high-resolution, nonhydrostatic numerical model. It is shown that the net downwelling is determined by the change in the mixed layer density along the boundary. For configurations in which the density on the boundary increases in the direction of Kelvin wave propagation, there is a net downwelling within the domain. For cases in which the density decreases in the direction of Kelvin wave propagation, cooling results in a net upwelling within the domain. Symmetric instability within the mixed layer drives an overturning cell in the interior, but it does not contribute to the net vertical motion. The net downwelling is determined by the geostrophic flow toward the boundary and is carried downward in a very narrow boundary layer of width E1/3, where E is the Ekman number. For the calculations here, this boundary layer is O(100 m) wide. A simple model of the mixed layer temperature that balances horizontal advection with surface cooling is used to predict the net downwelling and its dependence on external parameters. This model shows that the net sinking rate within the domain depends not only on the amount of heat loss at the surface but also on the Coriolis parameter, the mixed layer depth (or underlying stratification), and the horizontal velocity. These results indicate that if one is to correctly represent the buoyancy-forced downwelling in general circulation models, then it is crucial to accurately represent the velocity and mixed layer depth very close to the boundary. These results also imply that processes that lead to weak mixing within a few kilometers of the boundary, such as ice formation or freshwater runoff, can severely limit the downwelling forced by surface cooling, even if there is strong heat loss and convection farther offshore.


2014 ◽  
Vol 11 (3) ◽  
pp. 1435-1472
Author(s):  
Y. Drillet ◽  
J. M. Lellouche ◽  
B. Levier ◽  
M. Drévillon ◽  
O. Le Galloudec ◽  
...  

Abstract. Operational systems operated by Mercator Océan provide daily ocean forecasts, and combining these forecasts we can produce ensemble forecast and uncertainty estimates. This study focuses on the mixed layer depth in the North East Atlantic near the Porcupine Abyssal Plain for May 2013. This period is of interest for several reasons: (1) four Mercator Océan operational systems provide daily forecasts at a horizontal resolution of 1/4°, 1/12° and 1/36° with different physics; (2) glider deployment under the OSMOSIS project provides observation of the changes in mixed layer depth; (3) the ocean stratifies in May, but mixing events induced by gale force wind are observed and forecasted by the systems. A statistical approach and forecast error quantification for each system and for the combined products are presented. Skill scores indicate that forecasts are in any case better than persistence, and temporal correlations between forecast and observations are greater than 0.8 even for the 4 day forecast. The impact of atmospheric forecast error, and for the wind field in particular, is also quantified in terms of the forecast time delay and the intensity of mixing or stratification events.


2010 ◽  
Vol 28 (5) ◽  
pp. 962-967 ◽  
Author(s):  
Haibin Lü ◽  
Yijun He ◽  
Hui Shen ◽  
Limin Cui ◽  
Chang’e Dou

2017 ◽  
Vol 34 (9) ◽  
pp. 2083-2101 ◽  
Author(s):  
Hyejin Ok ◽  
Yign Noh ◽  
Yeonju Choi

AbstractThis study investigates how pycnocline smoothing and subgrid-scale variability of density profiles influence the determination of the mixed layer depth (MLD) in the global ocean, and applies the results of analysis to assess the ability of ocean general circulation models (OGCM) to simulate the MLD. For this purpose, individual, monthly mean, and climatological profiles are analyzed over a horizontal resolution of 1° × 1° for both observation data (Argo) and eddy-resolving OGCM (OFES) results. It is found that the MLDs from averaged profiles are generally smaller than those from individual profiles because of pycnocline smoothing induced by the averaging process. A correlation is found between the decrease in MLD Δh and the increase in pycnocline thickness Δδ of averaged profiles, except during winter in the high-latitude ocean. The relation is estimated as Δh = −αΔδ − β, where α ≃ 0.7 in all cases, but β increases with the subgrid-scale variability of density profiles. A correlation is also found between Δh and the standard deviation of the MLD within a grid. The results are applied to estimate how much of the MLD bias of OFES is due to prediction error and how much is due to profile error, induced by different pycnocline smoothing and the subgrid-scale variability of density profiles. The study also shows how profile error varies with the threshold density difference criterion.


1991 ◽  
Vol 181 (2) ◽  
pp. 360-361 ◽  
Author(s):  
M. M. O'Brien ◽  
A. Plueddemann ◽  
R. A. Weller

Sign in / Sign up

Export Citation Format

Share Document