Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework

2007 ◽  
Vol 64 (8) ◽  
pp. 2839-2861 ◽  
Author(s):  
Hugh Morrison ◽  
Wojciech W. Grabowski

This paper discusses the development and testing of a bulk warm-rain microphysics model that is capable of addressing the impact of atmospheric aerosols on ice-free clouds. Similarly to previous two-moment bulk schemes, this model predicts the mixing ratios and number concentrations of cloud droplets and drizzle/raindrops. The key elements of the model are the relatively sophisticated cloud droplet activation scheme and a comprehensive treatment of the collision–coalescence mechanism. For the latter, three previously published schemes are selected and tested, with a detailed (bin) microphysics model providing the benchmark. The unique aspect of these tests is that they are performed using a two-dimensional prescribed-flow (kinematic) framework, where both advective transport and gravitational sedimentation are included. Two quasi-idealized test cases are used, the first mimicking a single large eddy in a stratocumulus-topped boundary layer and the second representing a single shallow convective cloud. These types of clouds are thought to be the key in the indirect aerosol effect on climate. Two different aerosol loadings are considered for each case, corresponding to either pristine or polluted environments. In general, all three collision–coalescence schemes seem to capture key features of the bin model simulations (e.g., cloud depth, droplet number concentration, cloud water path, effective radius, precipitation rate, etc.) for the polluted and pristine environments, but there are detailed differences. Two of the collision–coalescence schemes require specification of the width of the cloud droplet spectrum, and model results show significant sensitivity to the specification of the width parameter. Sensitivity tests indicate that a one-moment version of the bulk model for drizzle/rain, which predicts rain/drizzle mixing ratio but not number concentration, produces significant errors relative to the bin model.

2014 ◽  
Vol 14 (13) ◽  
pp. 19837-19873 ◽  
Author(s):  
W. W. Grabowski ◽  
L.-P. Wang ◽  
T. V. Prabha

Abstract. This paper discusses impacts of cloud and precipitation processes on macrophysical properties of shallow convective clouds as simulated by a large-eddy model applying warm-rain bin microphysics. Simulations with and without collision-coalescence are considered with CCN concentrations of 30, 60, 120, and 240 mg−1. Simulations with collision-coalescence include either the traditional gravitational collision kernel or a novel kernel that includes enhancements due to the small-scale cloud turbulence. Simulations with droplet collisions were discussed in Wyszogrodzki et al. (2013) focusing on the impact of the turbulent collision kernel. The current paper expands that analysis and puts model results in the context of previous studies. Despite a significant increase of the drizzle/rain with the decrease of CCN concentration, enhanced by the impact of the small-scale turbulence, impacts on the macroscopic cloud field characteristics are relatively minor. We document a clear feedback between cloud-scale processes and the mean environmental profiles that increases with the amount of drizzle/rain. Model results show a systematic shift in the cloud top height distributions, with an increasing contributions of deeper clouds and an overall increase of the number of cloudy columns for stronger precipitating cases. We argue that this is consistent with the explanation suggested in Wyszogrodzki et al. (2013) namely, the increase of drizzle/rain leading to a more efficient condensate off-loading in the upper parts of the cloud field. An additional effect involves suppressing cloud droplet evaporation near cloud edges in low-CCN simulations as documented in previous studies. We pose a question whether the effects of cloud turbulence on drizzle/rain formation can be corroborated by remote sensing observations, for instance, from space. Although a clear signal is extracted from model results, we argue that the answer is negative due to uncertainties caused by the temporal variability of the shallow convective cloud field, sampling and spatial resolution of the satellite data, and overall accuracy of remote sensing retrievals.


2018 ◽  
Author(s):  
Max Heikenfeld ◽  
Bethan White ◽  
Laurent Labbouz ◽  
Philip Stier

Abstract. The impact of aerosols on ice- and mixed-phase processes in deep convective clouds remains highly uncertain and the wide range of interacting microphysical processes are still poorly understood. To understand these processes, we analyse diagnostic output of all individual microphysical process rates for two cloud microphysics schemes in the Weather and Research Forecasting model (WRF). We investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations through the microphysics all the way to the macrophysical development of the convective clouds. We perform simulations for two different cases of idealised supercells using two double-moment bulk microphysics schemes and a bin microphysics scheme. We use simulations with a comprehensive range of values for cloud droplet number concentration (CDNC) and cloud condensation nuclei (CCN) concentration as a proxy for aerosol effects on convective clouds. We have developed a new cloud tracking algorithm to analyse the morphology and time evolution of individually tracked convective cells in the simulations and their response to the aerosol perturbations. This analysis confirms an expected decrease in warm rain formation processes due to autoconversion and accretion for polluted conditions. The height at which the freezing occurs increases with increasing CDNC. However, there is no evidence of a significant increase in the total amount of latent heat release from freezing and riming. The cloud mass and the altitude of the cloud centre of gravity show contrasting responses to changes in proxies for aerosol number concentration between the different microphysics schemes.


2015 ◽  
Vol 8 (4) ◽  
pp. 4307-4323
Author(s):  
P. Wu ◽  
X. Dong ◽  
B. Xi

Abstract. In this study, we retrieve and document drizzle properties, and investigate the impact of drizzle on cloud property retrievals from ground-based measurements at the ARM Azores site from June 2009 to December 2010. For the selected cloud and drizzle samples, the drizzle occurrence is 42.6% with a maximum of 55.8% in winter and a minimum of 35.6% in summer. The annual means of drizzle liquid water path LWPd, effective radius rd, and number concentration Nd for the rain (virga) samples are 5.48 (1.29) g m−2, 68.7 (39.5) μm, and 0.14 (0.38) cm−3. The seasonal mean LWPd values are less than 4% of the MWR-retrieved LWP values. The annual mean differences in cloud-droplet effective radius with and without drizzle are 0.12 and 0.38 μm, respectively, for the virga and rain samples. Therefore, we conclude that the impact of drizzle on cloud property retrievals is insignificant at the ARM Azores site.


Author(s):  
Hanii Takahashi ◽  
Alejandro Bodas-Salcedo ◽  
Graeme Stephens

AbstractThe latest configuration of the Hadley Centre Global Environmental Model version 3 (HadGEM3) contains significant changes in the formulation of warm rain processes and aerosols. We evaluate the impacts of these changes in the simulation of warm rain formation processes using A-Train observations. We introduce a new model evaluation tool, quartile-based Contoured Frequency by Optical Depth Diagrams (CFODDs), in order to fill in some blind spots that conventional CFODDs have. Results indicate that HadGEM3 has weak linkage between the size of particle radius and warm rain formation processes, and switching to the new warm rain microphysics scheme causes more difference in warm rain formation processes than switching to the new aerosol scheme through reducing overly produced drizzle mode in HadGEM3. Finally, we run an experiment in which we perturb the second aerosol indirect effect (AIE) to study the rainfall-aerosol interaction in HadGEM3. Since the large changes in the cloud droplet number concentration (CDNC) appear in the AIE experiment, a large impact in warm rain diagnostics is expected. However, regions with large fractional changes in CDNC show a muted change in precipitation, arguably because large-scale constraints act to reduce the impact of such a big change in CDNC. The adjustment in cloud liquid water path to the AIE perturbation produces a large negative shortwave forcing in the midlatitudes.


2019 ◽  
Vol 19 (17) ◽  
pp. 11089-11103 ◽  
Author(s):  
Yue Jia ◽  
Susann Tegtmeier ◽  
Elliot Atlas ◽  
Birgit Quack

Abstract. It is an open question how localized elevated emissions of bromoform (CHBr3) and other very short-lived halocarbons (VSLHs), found in coastal and upwelling regions, and low background emissions, typically found over the open ocean, impact the atmospheric VSLH distribution. In this study, we use the Lagrangian dispersion model FLEXPART to simulate atmospheric CHBr3 resulting from assumed uniform background emissions, and from elevated emissions consistent with those derived during three tropical cruise campaigns. The simulations demonstrate that the atmospheric CHBr3 distributions in the uniform background emissions scenario are highly variable with high mixing ratios appearing in regions of convergence or low wind speed. This relation holds on regional and global scales. The impact of localized elevated emissions on the atmospheric CHBr3 distribution varies significantly from campaign to campaign. The estimated impact depends on the strength of the emissions and the meteorological conditions. In the open waters of the western Pacific and Indian oceans, localized elevated emissions only slightly increase the background concentrations of atmospheric CHBr3, even when 1∘ wide source regions along the cruise tracks are assumed. Near the coast, elevated emissions, including hot spots up to 100 times larger than the uniform background emissions, can be strong enough to be distinguished from the atmospheric background. However, it is not necessarily the highest hot spot emission that produces the largest enhancement, since the tug-of-war between fast advective transport and local accumulation at the time of emission is also important. Our results demonstrate that transport variations in the atmosphere itself are sufficient to produce highly variable VSLH distributions, and elevated VSLHs in the atmosphere do not always reflect a strong localized source. Localized elevated emissions can be obliterated by the highly variable atmospheric background, even if they are orders of magnitude larger than the average open ocean emissions.


2021 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Daniel T. McCoy ◽  
Ewan Crosbie ◽  
Richard H. Moore ◽  
Graeme J. Nott ◽  
...  

Abstract. Cloud droplet number concentration (Nd) is of central importance to observation-based estimates of aerosol indirect effects, being used to quantify both the cloud sensitivity to aerosol and the base state of the cloud. However, the derivation of Nd from satellite data depends on a number of assumptions about the cloud and the accuracy of the retrievals of the cloud properties from which it is derived, making it prone to systematic biases. A number of sampling strategies have been proposed to address these biases by selecting the most accurate Nd retrievals in the satellite data. This work compares the impact of these strategies on the accuracy of the satellite retrieved Nd, using a selection of insitu measurements. In stratocumulus regions, the MODIS Nd retrieval is able to achieve a high precision (r2 of 0.5–0.8). This is lower in other cloud regimes, but can be increased by appropriate sampling choices. Although the Nd sampling can have significant effects on the Nd climatology, it produces only a 20 % variation in the implied radiative forcing from aerosol-cloud interactions, with the choice of aerosol proxy driving the overall uncertainty. The results are summarised into recommendations for using MODIS Nd products and appropriate sampling.


2020 ◽  
Vol 13 (2) ◽  
pp. 661-684 ◽  
Author(s):  
Fan Mei ◽  
Jian Wang ◽  
Jennifer M. Comstock ◽  
Ralf Weigel ◽  
Martina Krämer ◽  
...  

Abstract. The indirect effect of atmospheric aerosol particles on the Earth's radiation balance remains one of the most uncertain components affecting climate change throughout the industrial period. The large uncertainty is partly due to the incomplete understanding of aerosol–cloud interactions. One objective of the GoAmazon2014/5 and the ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems)-CHUVA (Cloud Processes of the Main Precipitation Systems in Brazil) projects was to understand the influence of emissions from the tropical megacity of Manaus (Brazil) on the surrounding atmospheric environment of the rainforest and to investigate its role in the life cycle of convective clouds. During one of the intensive observation periods (IOPs) in the dry season from 1 September to 10 October 2014, comprehensive measurements of trace gases and aerosol properties were carried out at several ground sites. In a coordinated way, the advanced suites of sophisticated in situ instruments were deployed aboard both the US Department of Energy Gulfstream-1 (G1) aircraft and the German High Altitude and Long-Range Research Aircraft (HALO) during three coordinated flights on 9 and 21 September and 1 October. Here, we report on the comparison of measurements collected by the two aircraft during these three flights. Such comparisons are challenging but essential for assessing the data quality from the individual platforms and quantifying their uncertainty sources. Similar instruments mounted on the G1 and HALO collected vertical profile measurements of aerosol particle number concentrations and size distribution, cloud condensation nuclei concentrations, ozone and carbon monoxide mixing ratios, cloud droplet size distributions, and downward solar irradiance. We find that the above measurements from the two aircraft agreed within the measurement uncertainties. The relative fraction of the aerosol chemical composition measured by instruments on HALO agreed with the corresponding G1 data, although the total mass loadings only have a good agreement at high altitudes. Furthermore, possible causes of the discrepancies between measurements on the G1 and HALO are examined in this paper. Based on these results, criteria for meaningful aircraft measurement comparisons are discussed.


2013 ◽  
Vol 13 (8) ◽  
pp. 4235-4251 ◽  
Author(s):  
R. H. Moore ◽  
V. A. Karydis ◽  
S. L. Capps ◽  
T. L. Lathem ◽  
A. Nenes

Abstract. We use the Global Modelling Initiative (GMI) chemical transport model with a cloud droplet parameterisation adjoint to quantify the sensitivity of cloud droplet number concentration to uncertainties in predicting CCN concentrations. Published CCN closure uncertainties for six different sets of simplifying compositional and mixing state assumptions are used as proxies for modelled CCN uncertainty arising from application of those scenarios. It is found that cloud droplet number concentrations (Nd) are fairly insensitive to the number concentration (Na) of aerosol which act as CCN over the continents (∂lnNd/∂lnNa ~10–30%), but the sensitivities exceed 70% in pristine regions such as the Alaskan Arctic and remote oceans. This means that CCN concentration uncertainties of 4–71% translate into only 1–23% uncertainty in cloud droplet number, on average. Since most of the anthropogenic indirect forcing is concentrated over the continents, this work shows that the application of Köhler theory and attendant simplifying assumptions in models is not a major source of uncertainty in predicting cloud droplet number or anthropogenic aerosol indirect forcing for the liquid, stratiform clouds simulated in these models. However, it does highlight the sensitivity of some remote areas to pollution brought into the region via long-range transport (e.g., biomass burning) or from seasonal biogenic sources (e.g., phytoplankton as a source of dimethylsulfide in the southern oceans). Since these transient processes are not captured well by the climatological emissions inventories employed by current large-scale models, the uncertainties in aerosol-cloud interactions during these events could be much larger than those uncovered here. This finding motivates additional measurements in these pristine regions, for which few observations exist, to quantify the impact (and associated uncertainty) of transient aerosol processes on cloud properties.


2011 ◽  
Vol 24 (7) ◽  
pp. 1897-1912 ◽  
Author(s):  
Wojciech W. Grabowski ◽  
Hugh Morrison

Abstract This paper extends the previous cloud-resolving modeling study concerning the impact of cloud microphysics on convective–radiative quasi equilibrium (CRQE) over a surface with fixed characteristics and prescribed solar input, both mimicking the mean conditions on earth. The current study applies sophisticated double-moment warm-rain and ice microphysics schemes, which allow for a significantly more realistic representation of the impact of aerosols on precipitation processes and on the coupling between clouds and radiative transfer. Two contrasting cloud condensation nuclei (CCN) characteristics are assumed, representing pristine and polluted conditions, as well as contrasting representations of the effects of entrainment and mixing on the mean cloud droplet size. In addition, four sets of sensitivity simulations are also performed with changes that provide a reference for the main simulation set. As in the previous study, the CRQE mimics the estimates of globally and annually averaged water and energy fluxes across the earth’s atmosphere. There are some differences from the previous study, however, consistent with the slightly lower water vapor content in the troposphere and significantly reduced lower-tropospheric cloud fraction in current simulations. There is also a significant reduction of the difference between the pristine and polluted cases, from ∼20 to ∼4 W m−2 at the surface from ∼20 to ∼9 W m−2 at the top of the atmosphere (TOA). The difference between the homogeneous and extremely inhomogeneous mixing scenarios, ∼20 W m−2 in the previous study, is reduced to a mere 2 (1) W m−2 at the surface (TOA). An unexpected difference between the previous and current simulations is the lower Bowen ratio of the surface heat flux, the partitioning of the total flux into sensible and latent components. It is shown that most of the change comes from the difference in the representation of rain evaporation in the subcloud layer in the single- and double-moment microphysics schemes. The difference affects the mean air temperature and humidity near the surface, and thus the Bowen ratio. The differences between the various simulations are discussed, contrasting the process-level approach with the impact of cloud microphysics on the quasi-equilibrium state with a more appropriate system dynamics approach. The key distinction is that the latter includes the interactions among all the processes in the modeled system.


2020 ◽  
Author(s):  
Craig Poku ◽  
Andrew N. Ross ◽  
Adrian A. Hill ◽  
Alan M. Blyth ◽  
Ben Shipway

Abstract. Aerosols play a crucial role in the fog life cycle, as they determine the droplet number concentration, and hence droplet size, which in turn controls both the fog's optical thickness and life span. Detailed aerosol-microphysics schemes which accurately represent droplet formation and growth are unsuitable for weather forecasting and climate models, as the computational power required to calculate droplet formation would dominate the treatment of the rest of the physics in the model. A simple method to account for droplet formation is the use of an aerosol activation scheme, which parameterises the droplet number concentration based on a change in supersaturation at a given time. Traditionally, aerosol activation parameterisation schemes were designed for convective clouds and assume that supersaturation is reached through adiabatic lifting, with many imposing a minimum vertical velocity (e.g. 0.1 m/s) to account for unresolved sub-grid ascent. In radiation fog, the measured updrafts during initial formation are often insignificant, with radiative cooling being the dominant process leading to saturation. As a result, there is a risk that many aerosol activation schemes will overpredict the initial fog number concentration, which in turn may result in the fog transitioning to an optically thick layer too rapidly. This paper presents a more physically-based aerosol activation scheme that can account for a change in saturation due to non-adiabatic processes. Using an offline model, our results show that the minimum updraft velocity threshold assumption can overpredict the droplet number by up to 70 % in comparison to a cooling rate found in fog formation. The new scheme has been implemented in the Met Office Natural Environment Research Council (NERC) Cloud (MONC) LES model, and tested using observations of a radiation fog case study based in Cardington, UK. The results in this work show that using a more physically-based method of aerosol activation leads to the calculation of a more appropriate cloud droplet number. As a result, there is a slower transition to an optically thick (well-mixed) fog that is more in-line with observations. The results shown in this paper demonstrate the importance of aerosol activation representation in fog modelling, and the impact that the cloud droplet number has on processes linked to the formation and development of radiation fog. Unlike the previous parameterisation for aerosol activation, the revised scheme is suitable to simulate aerosol activation in both fog and convective cloud regimes.


Sign in / Sign up

Export Citation Format

Share Document