scholarly journals Dynamical Ocean Forcing of the Madden–Julian Oscillation at Lead Times of up to Five Months

2012 ◽  
Vol 25 (8) ◽  
pp. 2824-2842 ◽  
Author(s):  
Benjamin G. M. Webber ◽  
David P. Stevens ◽  
Adrian J. Matthews ◽  
Karen J. Heywood

Abstract The authors show that a simple three-dimensional ocean model linearized about a resting basic state can accurately simulate the dynamical ocean response to wind forcing by the Madden–Julian oscillation (MJO). This includes the propagation of equatorial waves in the Indian Ocean, from the generation of oceanic equatorial Kelvin waves to the arrival of downwelling oceanic equatorial Rossby waves in the western Indian Ocean, where they have been shown to trigger MJO convective activity. Simulations with idealized wind forcing suggest that the latitudinal width of this forcing plays a crucial role in determining the potential for such feedbacks. Forcing the model with composite MJO winds accurately captures the global ocean response, demonstrating that the observed ocean dynamical response to the MJO can be interpreted as a linear response to surface wind forcing. The model is then applied to study “primary” Madden–Julian events, which are not immediately preceded by any MJO activity or by any apparent atmospheric triggers, but have been shown to coincide with the arrival of downwelling oceanic equatorial Rossby waves. Case study simulations show how this oceanic equatorial Rossby wave activity is partly forced by reflection of an oceanic equatorial Kelvin wave triggered by a westerly wind burst 140 days previously, and partly directly forced by easterly wind stress anomalies around 40 days prior to the event. This suggests predictability for primary Madden–Julian events on times scales of up to five months, following the reemergence of oceanic anomalies forced by winds almost half a year earlier.

2017 ◽  
Vol 30 (11) ◽  
pp. 4299-4316 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen

Abstract A theory for intraseasonal atmosphere–ocean–atmosphere feedback is supported whereby oceanic equatorial Rossby waves are partly forced in the eastern Indian Ocean by the Madden–Julian oscillation (MJO), reemerge in the western Indian Ocean ~70 days later, and force large-scale convergence in the atmospheric boundary layer that precedes MJO deep convection. Downwelling equatorial Rossby waves permit high sea surface temperature (SST) and enhance meridional and zonal SST gradients that generate convergent circulations in the atmospheric boundary layer. The magnitude of the SST and SST gradient increases are 0.25°C and 1.5°C Mm−1 (1 megameter is equal to 1000 km), respectively. The atmospheric circulations driven by the SST gradient are estimated to be responsible for up to 45% of the intraseasonal boundary layer convergence observed in the western Indian Ocean. The SST-induced boundary layer convergence maximizes 3–4 days prior to the convective maximum and is hypothesized to serve as a trigger for MJO deep convection. Boundary layer convergence is shown to further augment deep convection by locally increasing boundary layer moisture. Warm SST anomalies facilitated by downwelling equatorial Rossby waves are also associated with increased surface latent heat fluxes that occur after MJO convective onset. Finally, generation of the most robust downwelling equatorial Rossby waves in the western Indian Ocean is shown to have a distinct seasonal distribution.


2006 ◽  
Vol 36 (5) ◽  
pp. 930-944 ◽  
Author(s):  
Dongliang Yuan ◽  
Weiqing Han

Abstract An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.


2019 ◽  
Vol 76 (7) ◽  
pp. 2023-2042 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen ◽  
Matthew R. Igel

Abstract The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.


2015 ◽  
Vol 45 (7) ◽  
pp. 1804-1821 ◽  
Author(s):  
Jing Wang ◽  
Dongliang Yuan

AbstractThe equatorial wave dynamics of sea level variations during negative Indian Ocean dipole (nIOD) events are investigated using the LICOM ocean general circulation model forced with the European Centre for Medium-Range Weather Forecast reanalysis wind stress and heat flux from 1990 to 2001. The work is a continuation of the study by Yuan and Liu, in which the equatorial wave dynamics during positive IOD events are investigated. The model has reproduced the sea level anomalies of satellite altimeter data well. Long equatorial waves extracted from the model output suggest two kinds of negative feedback during nIOD events: the western boundary reflection and the easterly wind bursts. During the strong 1998–99 nIOD event, the downwelling anomalies in the eastern Indian Ocean are terminated by persistent and strong upwelling Kelvin waves from the western boundary, which are reflected from the wind-forced equatorial Rossby waves over the southern central Indian Ocean. During the 1996–97 nIOD, however, the reflection of upwelling anomalies at the western boundary is terminated by the arrival of downwelling equatorial Rossby waves from the eastern boundary reflection in early 1997. Therefore, the negative feedback of this nIOD event is not provided by the western boundary reflection. The downwelling anomalies in the eastern basin during the 1996–97 nIOD event are terminated by easterly wind anomalies over the equatorial Indian Ocean in early 1997. The disclosed equatorial wave dynamics are important to the simulation and prediction of IOD evolution.


2009 ◽  
Vol 22 (7) ◽  
pp. 1850-1858 ◽  
Author(s):  
Jin-Yi Yu ◽  
Fengpeng Sun ◽  
Hsun-Ying Kao

Abstract The Community Climate System Model, version 3 (CCSM3), is known to produce many aspects of El Niño–Southern Oscillation (ENSO) realistically, but the simulated ENSO exhibits an overly strong biennial periodicity. Hypotheses on the cause of this excessive biennial tendency have thus far focused primarily on the model’s biases within the tropical Pacific. This study conducts CCSM3 experiments to show that the model’s biases in simulating the Indian Ocean mean sea surface temperatures (SSTs) and the Indian and Australian monsoon variability also contribute to the biennial ENSO tendency. Two CCSM3 simulations are contrasted: a control run that includes global ocean–atmosphere coupling and an experiment in which the air–sea coupling in the tropical Indian Ocean is turned off by replacing simulated SSTs with an observed monthly climatology. The decoupling experiment removes CCSM3’s warm bias in the tropical Indian Ocean and reduces the biennial variability in Indian and Australian monsoons by about 40% and 60%, respectively. The excessive biennial ENSO is found to reduce dramatically by about 75% in the decoupled experiment. It is shown that the biennial monsoon variability in CCSM3 excites an anomalous surface wind pattern in the western Pacific that projects well into the wind pattern associated with the onset phase of the simulated biennial ENSO. Therefore, the biennial monsoon variability is very effective in exciting biennial ENSO variability in CCSM3. The warm SST bias in the tropical Indian Ocean also increases ENSO variability by inducing stronger mean surface easterlies along the equatorial Pacific, which strengthen the Pacific ocean–atmosphere coupling and enhance the ENSO intensity.


2009 ◽  
Vol 39 (5) ◽  
pp. 1115-1132 ◽  
Author(s):  
Dongliang Yuan ◽  
Hailong Liu

Abstract Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997–98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.


2005 ◽  
Vol 18 (21) ◽  
pp. 4474-4497 ◽  
Author(s):  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Swadhin Behera ◽  
Satoru Shingu ◽  
Toshio Yamagata

Abstract Predictabilities of tropical climate signals are investigated using a relatively high resolution Scale Interaction Experiment–Frontier Research Center for Global Change (FRCGC) coupled GCM (SINTEX-F). Five ensemble forecast members are generated by perturbing the model’s coupling physics, which accounts for the uncertainties of both initial conditions and model physics. Because of the model’s good performance in simulating the climatology and ENSO in the tropical Pacific, a simple coupled SST-nudging scheme generates realistic thermocline and surface wind variations in the equatorial Pacific. Several westerly and easterly wind bursts in the western Pacific are also captured. Hindcast results for the period 1982–2001 show a high predictability of ENSO. All past El Niño and La Niña events, including the strongest 1997/98 warm episode, are successfully predicted with the anomaly correlation coefficient (ACC) skill scores above 0.7 at the 12-month lead time. The predicted signals of some particular events, however, become weak with a delay in the phase at mid and long lead times. This is found to be related to the intraseasonal wind bursts that are unpredicted beyond a few months of lead time. The model forecasts also show a “spring prediction barrier” similar to that in observations. Spatial SST anomalies, teleconnection, and global drought/flood during three different phases of ENSO are successfully predicted at 9–12-month lead times. In the tropical North Atlantic and southwestern Indian Ocean, where ENSO has predominant influences, the model shows skillful predictions at the 7–12-month lead times. The distinct signal of the Indian Ocean dipole (IOD) event in 1994 is predicted at the 6-month lead time. SST anomalies near the western coast of Australia are also predicted beyond the 12-month lead time because of pronounced decadal signals there.


2016 ◽  
Vol 29 (17) ◽  
pp. 6085-6108 ◽  
Author(s):  
Toshiaki Shinoda ◽  
Weiqing Han ◽  
Tommy G. Jensen ◽  
Luis Zamudio ◽  
E. Joseph Metzger ◽  
...  

Abstract Previous studies indicate that equatorial zonal winds in the Indian Ocean can significantly influence the Indonesian Throughflow (ITF). During the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, two strong MJO events were observed within a month without a clear suppressed phase between them, and these events generated exceptionally strong ocean responses. Strong eastward currents along the equator in the Indian Ocean lasted more than one month from late November 2011 to early January 2012. The influence of these unique MJO events during the field campaign on ITF variability is investigated using a high-resolution (1/25°) global ocean general circulation model, the Hybrid Coordinate Ocean Model (HYCOM). The strong westerlies associated with these MJO events, which exceed 10 m s−1, generate strong equatorial eastward jets and downwelling near the eastern boundary. The equatorial jets are realistically simulated by the global HYCOM based on the comparison with the data collected during the field campaign. The analysis demonstrates that sea surface height (SSH) and alongshore velocity anomalies at the eastern boundary propagate along the coast of Sumatra and Java as coastal Kelvin waves, significantly reducing the ITF transport at the Makassar Strait during January–early February. The alongshore velocity anomalies associated with the Kelvin wave significantly leads SSH anomalies. The magnitude of the anomalous currents at the Makassar Strait is exceptionally large because of the unique feature of the MJO events, and thus the typical seasonal cycle of ITF could be significantly altered by strong MJO events such as those observed during the CINDY/DYNAMO field campaign.


2021 ◽  
Author(s):  
Yan Du ◽  
Yuhong Zhang ◽  
Lian-Yi Zhang ◽  
Tomoki Tozuka ◽  
Wenju Cai

<p>The 2019 positive Indian Ocean Dipole (IOD) was the strongest event since the 1960s which developed independently without coinciding El Niño. The dynamics is not fully understood. Here we show that in March-May, westward propagating oceanic Rossby waves, a remnant consequence of the weak 2018 Pacific warm condition, led to anomalous sea surface temperature warming in the southwest tropical Indian Ocean (TIO), inducing deep convection and anomalous easterly winds along the equator, which triggered the initial cooling in the east. In June-August, the easterly wind anomalies continued to evolve through ocean-atmosphere coupling involving Bjerknes feedback and equatorial nonlinear ocean advection, until its maturity in September-November. This study clarifies the contribution of oceanic Rossby waves in the south TIO in different dynamic settings and reveals a new triggering mechanism for extreme IOD events that will help to understand IOD diversity.</p>


2007 ◽  
Vol 37 (2) ◽  
pp. 188-202 ◽  
Author(s):  
Lee-Lueng Fu

Abstract The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean’s response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10°S and 10°N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. For the semiannual period and the size of the basin, the resonance involves the second baroclinic vertical mode of the ocean. The theory also calls for similar modes at 90 and 60 days. These modes are found only in the eastern part of the basin, where the wind forcing at these periods is primarily located. The western parts of the theoretical modal patterns are not observed, probably because of the lack of wind forcing. There is also similar SSH variability at 120 and 75 days. The 120-day variability, with spatial patterns resembling the semiannual mode, is close to a resonance involving the first baroclinic vertical mode. The 75-day variability, although not a resonant basin mode in theory, exhibits properties similar to the 60- and 90-day variabilities with energy confined to the eastern basin, where the SSH variability seems in resonance with the local wind forcing. The time it takes an oceanic signal to travel eastward as Kelvin waves from the forcing location along the equator and back as Rossby waves off the equator roughly corresponds to the period of the wind forcing. The SSH variability at 60–90 days is coherent with sea surface temperature (SST) with a near-zero phase difference, showing the effects of the time-varying thermocline depth on SST, which may affect the wind in an ocean–atmosphere coupled process governing the intraseasonal variability.


Sign in / Sign up

Export Citation Format

Share Document