scholarly journals Oceanic Impetus for Convective Onset of the Madden–Julian Oscillation in the Western Indian Ocean

2017 ◽  
Vol 30 (11) ◽  
pp. 4299-4316 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen

Abstract A theory for intraseasonal atmosphere–ocean–atmosphere feedback is supported whereby oceanic equatorial Rossby waves are partly forced in the eastern Indian Ocean by the Madden–Julian oscillation (MJO), reemerge in the western Indian Ocean ~70 days later, and force large-scale convergence in the atmospheric boundary layer that precedes MJO deep convection. Downwelling equatorial Rossby waves permit high sea surface temperature (SST) and enhance meridional and zonal SST gradients that generate convergent circulations in the atmospheric boundary layer. The magnitude of the SST and SST gradient increases are 0.25°C and 1.5°C Mm−1 (1 megameter is equal to 1000 km), respectively. The atmospheric circulations driven by the SST gradient are estimated to be responsible for up to 45% of the intraseasonal boundary layer convergence observed in the western Indian Ocean. The SST-induced boundary layer convergence maximizes 3–4 days prior to the convective maximum and is hypothesized to serve as a trigger for MJO deep convection. Boundary layer convergence is shown to further augment deep convection by locally increasing boundary layer moisture. Warm SST anomalies facilitated by downwelling equatorial Rossby waves are also associated with increased surface latent heat fluxes that occur after MJO convective onset. Finally, generation of the most robust downwelling equatorial Rossby waves in the western Indian Ocean is shown to have a distinct seasonal distribution.

2019 ◽  
Vol 76 (7) ◽  
pp. 2023-2042 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen ◽  
Matthew R. Igel

Abstract The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.


2012 ◽  
Vol 25 (14) ◽  
pp. 4914-4931 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li

Abstract The moisture budget associated with the eastward-propagating Madden–Julian oscillation (MJO) was diagnosed using 1979–2001 40-yr ECMWF Re-Analysis (ERA-40) data. A marked zonal asymmetry of the moisture relative to the MJO convection appears in the planetary boundary layer (PBL, below 700 hPa), creating a potentially more unstable stratification to the east of the MJO convection and favoring the eastward propagation of MJO. The PBL-integrated moisture budget diagnosis indicates that the vertical advection of moisture dominates the low-level moistening ahead of the convection. A further diagnosis indicates that the leading term in the vertical moisture advection is the advection of the background moisture by the MJO ascending flow associated with PBL convergence. The cause of the zonally asymmetric PBL convergence is further examined. It is found that heating-induced free-atmospheric wave dynamics account for 75%–90% of the total PBL convergence, while the warm SST anomaly induced by air–sea interaction contributes 10%–25% of the total PBL convergence. The horizontal moisture advection also plays a role in contributing to the PBL moistening ahead of the MJO convection. The leading term in the moisture advection is the advection across the background moisture gradient by the MJO flow. In the western Indian Ocean, Maritime Continent, and western Pacific, the meridional moisture advection by the MJO northerly flow dominates, while in the eastern Indian Ocean the zonal moisture advection is greater. The contribution of the moisture advection by synoptic eddies is in general small; it has a negative effect over the tropical Indian Ocean and western Pacific and becomes positive in the Maritime Continent region.


2012 ◽  
Vol 25 (8) ◽  
pp. 2824-2842 ◽  
Author(s):  
Benjamin G. M. Webber ◽  
David P. Stevens ◽  
Adrian J. Matthews ◽  
Karen J. Heywood

Abstract The authors show that a simple three-dimensional ocean model linearized about a resting basic state can accurately simulate the dynamical ocean response to wind forcing by the Madden–Julian oscillation (MJO). This includes the propagation of equatorial waves in the Indian Ocean, from the generation of oceanic equatorial Kelvin waves to the arrival of downwelling oceanic equatorial Rossby waves in the western Indian Ocean, where they have been shown to trigger MJO convective activity. Simulations with idealized wind forcing suggest that the latitudinal width of this forcing plays a crucial role in determining the potential for such feedbacks. Forcing the model with composite MJO winds accurately captures the global ocean response, demonstrating that the observed ocean dynamical response to the MJO can be interpreted as a linear response to surface wind forcing. The model is then applied to study “primary” Madden–Julian events, which are not immediately preceded by any MJO activity or by any apparent atmospheric triggers, but have been shown to coincide with the arrival of downwelling oceanic equatorial Rossby waves. Case study simulations show how this oceanic equatorial Rossby wave activity is partly forced by reflection of an oceanic equatorial Kelvin wave triggered by a westerly wind burst 140 days previously, and partly directly forced by easterly wind stress anomalies around 40 days prior to the event. This suggests predictability for primary Madden–Julian events on times scales of up to five months, following the reemergence of oceanic anomalies forced by winds almost half a year earlier.


2019 ◽  
Vol 76 (1) ◽  
pp. 265-284 ◽  
Author(s):  
Jennifer Gahtan ◽  
Paul Roundy

Abstract The onset of Madden–Julian oscillation (MJO) deep convection often occurs over the western Indian Ocean and has upper-tropospheric circulation precursors that consist of eastward-circumnavigating tropical easterlies and subtropical cyclonic Rossby gyres near eastern Africa. Moreover, the evolution of the large-scale circulation and its ability to reduce subsidence may be necessary for the initial development of organized deep convection. To better understand the evolution of the circulation precursors and their interaction with convective onset, this paper analyzes the upper-tropospheric zonal momentum budget using a regional index based on the temporal progression of the meridional structure of intraseasonal outgoing longwave radiation anomalies over eastern Africa and the western Indian Ocean. The circumnavigating intraseasonal easterly acceleration produces upper-level divergence when it reaches the western extent of a region of intraseasonal westerlies and may provide a forcing for the in-phase midtropospheric upward vertical motion. For about three-quarters of the identified cases, the easterly acceleration over the western Indian Ocean is a response to the zonal pressure gradient over the region. In the composite, the negative pressure gradient force may be initially induced by the injection of negative geopotential height anomalies from the extratropics of both hemispheres to the tropics over eastern Africa, though tropically circumnavigating and local signals may also contribute to the easterly acceleration, especially in the days following convective onset.


2017 ◽  
Vol 44 (9) ◽  
pp. 4224-4232 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen ◽  
Ebenezer S. Nyadjro

2006 ◽  
Vol 63 (2) ◽  
pp. 582-597 ◽  
Author(s):  
David J. Raymond ◽  
Christopher S. Bretherton ◽  
John Molinari

Abstract The dynamical factors controlling the mean state and variability of the east Pacific intertropical convergence zone (ITCZ) and the associated cross-equatorial boundary layer flow are investigated using observations from the East Pacific Investigation of Climate (EPIC2001) project. The tropical east Pacific exhibits a southerly boundary layer flow that terminates in the ITCZ. This flow is induced by the strong meridional sea surface temperature (SST) gradient in the region. Away from the equator and from deep convection, it is reasonably well described on a day-to-day basis by an extended Ekman balance model. Variability in the strength and northward extent of this flow is caused by variations in free-tropospheric pressure gradients that either reinforce or oppose the pressure gradient associated with the SST gradient. These free-tropospheric gradients are caused by easterly waves, tropical cyclones, and the Madden–Julian oscillation. Convergence in the boundary layer flow is often assumed to be responsible for destabilizing the atmosphere to deep convection. An alternative hypothesis is that enhanced total surface heat fluxes associated with high SSTs and strong winds act to produce the necessary destabilization. Analysis of the moist entropy budget of the planetary boundary layer shows that, on average, surface fluxes generate over twice the destabilization produced by boundary layer convergence in the east Pacific ITCZ.


2004 ◽  
Vol 22 (8) ◽  
pp. 2679-2691 ◽  
Author(s):  
M. V. Ramana ◽  
P. Krishnan ◽  
S. Muraleedharan Nair ◽  
P. K. Kunhikrishnan

Abstract. Spatial and temporal variability of the Marine Atmospheric Boundary Layer (MABL) height for the Indian Ocean Experiment (INDOEX) study period are examined using the data collected through Cross-chained LORAN (Long-Range Aid to Navigation) Atmospheric Sounding System (CLASS) launchings during the Northern Hemispheric winter monsoon period. This paper reports the results of the analyses of the data collected during the pre-INDOEX (1997) and the INDOEX-First Field Phase (FFP; 1998) in the latitude range 14°N to 20°S over the Arabian Sea and the Indian Ocean. Mixed layer heights are derived from thermodynamic profiles and they indicated the variability of heights ranging from 400m to 1100m during daytime depending upon the location. Mixed layer heights over the Indian Ocean are slightly higher during the INDOEX-FFP than the pre-INDOEX due to anomalous conditions prevailing during the INDOEX-FFP. The trade wind inversion height varied from 2.3km to 4.5km during the pre-INDOEX and from 0.4km to 2.5km during the INDOEX-FFP. Elevated plumes of polluted air (lofted aerosol plumes) above the marine boundary layer are observed from thermodynamic profiles of the lower troposphere during the INDOEX-FFP. These elevated plumes are examined using 5-day back trajectory analysis and show that one group of air mass travelled a long way from Saudi Arabia and Iran/Iraq through India before reaching the location of measurement, while the other air mass originates from India and the Bay of Bengal.


2009 ◽  
Vol 39 (5) ◽  
pp. 1115-1132 ◽  
Author(s):  
Dongliang Yuan ◽  
Hailong Liu

Abstract Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997–98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.


1990 ◽  
Vol 52 (1-2) ◽  
pp. 177-191
Author(s):  
M. R. Ramesh Kumar ◽  
Y. Sadhuram ◽  
G. S. Michael ◽  
L. V. Gangadhara Rao

2009 ◽  
Vol 66 (11) ◽  
pp. 3277-3296 ◽  
Author(s):  
James J. Benedict ◽  
David A. Randall

Abstract The detailed dynamic and thermodynamic space–time structures of the Madden–Julian oscillation (MJO) as simulated by the superparameterized Community Atmosphere Model version 3.0 (SP-CAM) are analyzed. Superparameterization involves substituting conventional boundary layer, moist convection, and cloud parameterizations with a configuration of cloud-resolving models (CRMs) embedded in each general circulation model (GCM) grid cell. Unlike most GCMs that implement conventional parameterizations, the SP-CAM displays robust atmospheric variability on intraseasonal space and time (30–60 days) scales. The authors examine a 19-yr SP-CAM simulation based on the Atmospheric Model Intercomparison Project protocol, forced by prescribed sea surface temperatures. Overall, the space–time structures of MJO convective disturbances are very well represented in the SP-CAM. Compared to observations, the model produces a similar vertical progression of increased moisture, warmth, and heating from the boundary layer to the upper troposphere as deep convection matures. Additionally, important advective and convective processes in the SP-CAM compare favorably with those in observations. A deficiency of the SP-CAM is that simulated convective intensity organized on intraseasonal space–time scales is overestimated, particularly in the west Pacific. These simulated convective biases are likely due to several factors including unrealistic boundary layer interactions, a lack of weakening of the simulated disturbance over the Maritime Continent, and mean state differences.


Sign in / Sign up

Export Citation Format

Share Document