scholarly journals Decadal Covariability of the Northern Wintertime Land Surface Temperature and Atmospheric Circulation

2014 ◽  
Vol 27 (2) ◽  
pp. 633-651 ◽  
Author(s):  
B. Yu ◽  
X. L. Wang ◽  
X. B. Zhang ◽  
J. Cole ◽  
Y. Feng

Abstract The decadal covariability of northern wintertime land surface temperature and 500-hPa geopotential anomalies is examined using the National Centers for Environmental Prediction–National Center for Atmospheric Research and the Twentieth-Century Reanalyses over the twentieth century and a 996-yr preindustrial climate simulation from the Canadian Earth System Model. Based on the reanalysis data, the covariability is dominated by two leading maximum covariance analysis (MCA) modes. MCA1 is characterized by temperature anomalies over most of Canada, the eastern United States, Mexico, and Eurasian mid- to high latitudes, accompanied by anomalies of opposite sign elsewhere over northern landmasses. MCA2 features temperature anomalies over most of North America, Eurasia, and Greenland with opposite anomalies elsewhere. In the upper troposphere the synoptic vorticity fluxes reinforce the anomalous circulation, while in the lower troposphere advection by the anomalous mean flow offsets the eddy forcing and maintains the decadal temperature perturbation. The MCA1-associated variability has a broad spectrum over decadal–interdecadal time scales, while the MCA2-related variability has a significant power peak around 20 yr. The change of temperature and geopotential trends around 1990 tends to be a decadal-scale shift in winter and has significant features of the leading mode of the decadal covariability. The climate model has broadly similar decadal covariability, including the leading MCA patterns as well as the temporal evolution of the patterns. The decadal temperature and geopotential anomalies primarily covary with the North Atlantic Oscillation but also with the variability of the North Pacific index, while the Southern Oscillation index variability tends to be the least important predictor for the northern decadal temperature and geopotential anomalies.

2019 ◽  
Vol 147 (3) ◽  
pp. 791-807 ◽  
Author(s):  
Vasubandhu Misra ◽  
Amit Bhardwaj

Abstract This study introduces an objective definition for onset and demise of the northeast Indian monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850-hPa winds, surface wind stress, surface ocean currents, and upper-ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño–Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season.


Author(s):  
Behnam Khorrami ◽  
Orhan Gunduz ◽  
Nilanchal Patel ◽  
Souad Ghouzlane ◽  
Mohamed Najjar

2007 ◽  
Vol 20 (9) ◽  
pp. 1810-1820 ◽  
Author(s):  
Christopher J. Watts ◽  
Russell L. Scott ◽  
Jaime Garatuza-Payan ◽  
Julio C. Rodriguez ◽  
John H. Prueger ◽  
...  

Abstract The vegetation in the core region of the North American monsoon (NAM) system changes dramatically after the onset of the summer rains so that large changes may be expected in the surface fluxes of radiation, heat, and moisture. Most of this region lies in the rugged terrain of western Mexico and very few measurements of these fluxes have been made in the past. Surface energy balance measurements were made at seven sites in Sonora, Mexico, and Arizona during the intensive observation period (IOP) of the North American Monsoon Experiment (NAME) in summer 2004 to better understand how land surface vegetation change alters energy flux partitioning. Satellite data were used to obtain time series for vegetation indices and land surface temperature for these sites. The results were analyzed to contrast conditions before the onset of the monsoon with those afterward. As expected, precipitation during the 2004 monsoon was highly variable from site to site, but it fell in greater quantities at the more southern sites. Likewise, large changes in the vegetation index were observed, especially for the subtropical sites in Sonora. However, the changes in the broadband albedo were very small, which was rather surprising. The surface net radiation was consistent with the previous observations, being largest for surfaces that are transpiring and cool, and smallest for surfaces that are dry and hot. The largest evaporation rates were observed for the subtropical forest and riparian vegetation sites. The evaporative fraction for the forest site was highly correlated with its vegetation index, except during the dry spell in August. This period was clearly detected in the land surface temperature data, which rose steadily in this period to a maximum at its end.


2021 ◽  
Author(s):  
Sahidan Abdulmana ◽  
Apiradee Lim ◽  
Sangdao Wongsai ◽  
Noppachai Wongsai

Abstract Land surface temperature (LST) is a significant factor in surface energy balance and global climatology studies. Land cover (LC) and elevation are two factors that affect the change of LST, and their effects depend on different geography. This study aims to demonstrate an alternative approach to examine the change of LST during 20 years (2001 to 2020) on Taiwan Island and to investigate the effect of LC change and elevation on a decadal trend of LST using a linear model that adjusting for each determinate factor. MODIS LST and LC data, as well as GMTED2010 elevation product, were downloaded available website. The natural cubic spline function was used to model annual seasonal patterns in LST. Linear regression model was used to estimate decadal change of long-term LST time series. Weighted sum contrasts linear regression was used to assess the effect of LC transformation and elevation on the decadal LST change by comparing adjusting mean of all factors. The adopted analysis method was an appropriate approach to assess categorical factors than those based on treatment contrasts, requiring specifying a control group to compare means and confidence intervals. Results showed that there was an increase in LST for most of the island. The average daytime and nighttime LST trends were 0.12 and 0.31°C/decade, respectively. However, areas in the southern part of the north-south direction mountain range show a statistically significant increase in LST in both daytime and nighttime. The major landslides caused this noticeable change of surface temperature due to the catastrophic damage of typhoon Morakot in 2009. The results also revealed that the different pattern of LC change has a significant effect on daytime LST, but not on nighttime LST trends. The elevation above 600 m had affected both daytime and nighttime LSTs.


Sign in / Sign up

Export Citation Format

Share Document