scholarly journals Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections

2014 ◽  
Vol 27 (17) ◽  
pp. 6779-6798 ◽  
Author(s):  
Benoit Hingray ◽  
Mériem Saïd

Abstract A simple and robust framework is proposed for the partitioning of the different components of internal variability and model uncertainty in an unbalanced multimember multimodel ensemble (MM2E) of climate projections obtained for a suite of statistical downscaling models (SDMs) and global climate models (GCMs). It is based on the quasi-ergodic assumption for transient climate simulations. Model uncertainty components are estimated from the noise-free signals of the different modeling chains using a two-way analysis of variance (ANOVA) framework. The residuals from the noise-free signals are used to estimate the large- and small-scale internal variability components associated with each considered GCM–SDM configuration. This framework makes it possible to take into account all members available from any climate ensemble of opportunity. Uncertainty is quantified as a function of lead time for projections of changes in temperature and precipitation produced for a mesoscale alpine catchment. Internal variability accounts for more than 80% of total uncertainty in the first decades. This proportion decreases to less than 10% at the end of the century for temperature but remains greater than 50% for precipitation. Small-scale internal variability is negligible for temperature; however, it is similar to the large-scale component for precipitation, whatever the projection lead time. SDM uncertainty is always greater than GCM uncertainty for precipitation. It is also greater for temperature in the middle of the century. The response-to-uncertainty ratio is very high for temperature. For precipitation, it is always less than one, indicating that even the sign of change is uncertain.

2010 ◽  
Vol 23 (24) ◽  
pp. 6485-6503 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Richard G. Jones ◽  
Erik Kjellström ◽  
James M. Murphy

Abstract Multimodel ensembles, whereby different global climate models (GCMs) and regional climate models (RCMs) are combined, have been widely used to explore uncertainties in regional climate projections. In this study, the extent to which information can be enhanced from sparsely filled GCM–RCM ensemble matrices and the way in which simulations should be prioritized to sample uncertainties most effectively are examined. A simple scaling technique, whereby the local climate response in an RCM is predicted from the large-scale change in the GCM, is found to often show skill in estimating local changes for missing GCM–RCM combinations. In particular, scaling shows skill for precipitation indices (including mean, variance, and extremes) across Europe in winter and mean and extreme temperature in summer and winter, except for hot extremes over central/northern Europe in summer. However, internal variability significantly impacts the ability to determine scaling skill for precipitation indices, with a three-member ensemble found to be insufficient for identifying robust local scaling relationships in many cases. This study suggests that, given limited computer resources, ensembles should be designed to prioritize the sampling of GCM uncertainty, using a reduced set of RCMs. Exceptions are found over the Alps and northeastern Europe in winter and central Europe in summer, where sampling multiple RCMs may be equally or more important for capturing uncertainty in local temperature or precipitation change. This reflects the significant role of local processes in these regions. Also, to determine the ensemble strategy in some cases, notably precipitation extremes in summer, better sampling of internal variability is needed.


2015 ◽  
Vol 12 (12) ◽  
pp. 12649-12701 ◽  
Author(s):  
J.-P. Vidal ◽  
B. Hingray ◽  
C. Magand ◽  
E. Sauquet ◽  
A. Ducharne

Abstract. This paper proposes a methodology for estimating the transient probability distribution of yearly hydrological variables conditional to an ensemble of projections built from multiple general circulation models (GCMs), multiple statistical downscaling methods (SDMs) and multiple hydrological models (HMs). The methodology is based on the quasi-ergodic analysis of variance (QE-ANOVA) framework that allows quantifying the contributions of the different sources of total uncertainty, by critically taking account of large-scale internal variability stemming from the transient evolution of multiple GCM runs, and of small-scale internal variability derived from multiple realizations of stochastic SDMs. The QE-ANOVA framework was initially developed for long-term climate averages and is here extended jointly to (1) yearly anomalies and (2) low flow variables. It is applied to better understand possible transient futures of both winter and summer low flows for two snow-influenced catchments in the southern French Alps. The analysis takes advantage of a very large dataset of transient hydrological projections that combines in a comprehensive way 11 runs from 4 different GCMs, 3 SDMs with 10 stochastic realizations each, as well as 6 diverse HMs. The change signal is a decrease in yearly low flows of around −20 % in 2065, except for the most elevated catchment in winter where low flows barely decrease. This signal is largely masked by both large- and small-scale internal variability, even in 2065. The time of emergence of the change signal on 30 year low-flow averages is however around 2035, i.e. for time slices starting in 2020. The most striking result is that a large part of the total uncertainty – and a higher one than that due to the GCMs – stems from the difference in HM responses. An analysis of the origin of this substantial divergence in HM responses for both catchments and in both seasons suggests that both evapotranspiration and snowpack components of HMs should be carefully checked for their robustness in a changed climate in order to provide reliable outputs for informing water resource adaptation strategies.


Author(s):  
Douglas Maraun

Global climate models are our main tool to generate quantitative climate projections, but these models do not resolve the effects of complex topography, regional scale atmospheric processes and small-scale extreme events. To understand potential regional climatic changes, and to provide information for regional-scale impact modeling and adaptation planning, downscaling approaches have been developed. Regional climate change modeling, even though it is still a matter of basic research and questioned by many researchers, is urged to provide operational results. One major downscaling class is statistical downscaling, which exploits empirical relationships between larger-scale and local weather. The main statistical downscaling approaches are perfect prog (often referred to as empirical statistical downscaling), model output statistics (which is typically some sort of bias correction), and weather generators. Statistical downscaling complements or adds to dynamical downscaling and is useful to generate user-tailored local-scale information, or to efficiently generate regional scale information about mean climatic changes from large global climate model ensembles. Further research is needed to assess to what extent the assumptions underlying statistical downscaling are met in typical applications, and to develop new methods for generating spatially coherent projections, and for including process-understanding in bias correction. The increasing resolution of global climate models will improve the representation of downscaling predictors and will, therefore, make downscaling an even more feasible approach that will still be required to tailor information for users.


2012 ◽  
Vol 12 (8) ◽  
pp. 3601-3610 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


2018 ◽  
Vol 31 (24) ◽  
pp. 10013-10020
Author(s):  
Bernard R. Lipat ◽  
Aiko Voigt ◽  
George Tselioudis ◽  
Lorenzo M. Polvani

Recent analyses of global climate models suggest that uncertainty in the coupling between midlatitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud–circulation coupling have remained unclear. Here, we use a global climate model in an idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud–circulation coupling. For the same poleward shift of the Hadley cell (HC) edge, models with narrower climatological HCs exhibit stronger midlatitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the midlatitude cloud–circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change.


2021 ◽  
Author(s):  
Guillaume Evin ◽  
Samuel Somot ◽  
Benoit Hingray

Abstract. Large Multiscenarios Multimodel Ensembles (MMEs) of regional climate model (RCM) experiments driven by Global Climate Models (GCM) are made available worldwide and aim at providing robust estimates of climate changes and associated uncertainties. Due to many missing combinations of emission scenarios and climate models leading to sparse Scenario-GCM-RCM matrices, these large ensembles are however very unbalanced, which makes uncertainty analyses impossible with standard approaches. In this paper, the uncertainty assessment is carried out by applying an advanced statistical approach, called QUALYPSO, to a very large ensemble of 87 EURO-CORDEX climate projections, the largest ensemble ever produced for regional projections in Europe. This analysis provides i) the most up-to-date and balanced estimates of mean changes for near-surface temperature and precipitation in Europe, ii) the total uncertainty of projections and its partition as a function of time, and iii) the list of the most important contributors to the model uncertainty. For changes of total precipitation and mean temperature in winter (DJF) and summer (JJA), the uncertainty due to RCMs can be as large as the uncertainty due to GCMs at the end of the century (2071–2099). Both uncertainty sources are mainly due to a small number of individual models clearly identified. Due to the highly unbalanced character of the MME, mean estimated changes can drastically differ from standard average estimates based on the raw ensemble of opportunity. For the RCP4.5 emission scenario in Central-Eastern Europe for instance, the difference between balanced and direct estimates are up to 0.8 °C for summer temperature changes and up to 20 % for summer precipitation changes at the end of the century.


2021 ◽  
Author(s):  
Gavin D. Madakumbura ◽  
Chad W. Thackeray ◽  
Jesse Norris ◽  
Naomi Goldenson ◽  
Alex Hall

Abstract Global climate models produce large increases in extreme precipitation when subject to anthropogenic forcing, but detecting this human influence in observations is challenging. Large internal variability makes the signal difficult to characterize. Models produce diverse precipitation responses to anthropogenic forcing, mirroring a variety of parameterization choices for subgrid-scale processes. And observations are inhomogeneously sampled in space and time, leading to multiple global datasets, each produced with a different homogenization technique. Thus, previous attempts to detect human influence on extreme precipitation have not incorporated internal variability or model uncertainty, and have been limited to specific regions and observational datasets. Using machine learning methods, we find a physically interpretable anthropogenic signal that is detectable in all global datasets. Detection occurs even when internal variability and model uncertainty are taken into account. Machine learning efficiently generates multiple lines of evidence supporting detection of an anthropogenic signal in extreme precipitation.


2006 ◽  
Vol 19 (21) ◽  
pp. 5554-5569 ◽  
Author(s):  
P. Good ◽  
J. Lowe

Abstract Aspects of model emergent behavior and uncertainty in regional- and small-scale effects of increasing CO2 on seasonal (June–August) precipitation are explored. Nineteen different climate models are studied. New methods of comparing multiple climate models reveal a clearer and more impact-relevant view of precipitation projections for the current century. First, the importance of small spatial scales in multimodel projections is demonstrated. Local trends can be much larger than or even have an opposing sign to the large-scale regional averages used in previous studies. Small-scale effects of increasing CO2 and natural internal variability both play important roles here. These small-scale features make multimodel comparisons difficult for precipitation. New methods that allow information from small spatial scales to be usefully compared across an ensemble of multiple models are presented. The analysis philosophy of this study works with statistical distributions of small-scale variations within climatological regions. A major result of this work is a set of emergent relationships coupling the small- and regional-scale effects of CO2 on precipitation trends. Within each region, a single relationship fits the ensemble of 19 different climate models. Using these relationships, a surprisingly large part of the intermodel variance in small-scale effects of CO2 is explainable simply by the intermodel variance in the regional mean (a form of pattern scaling). Different regions show distinctly different relationships. These relationships imply that regional mean results are still useful, as long as the interregional variation in their relationship with impact-relevant extreme trends is recognized. These relationships are used to present a clear but rich picture of an aspect of model uncertainty, characterized by the intermodel spread in seasonal precipitation trends, including information from small spatial scales.


2018 ◽  
Vol 11 (4) ◽  
pp. 1443-1465 ◽  
Author(s):  
Marco de Bruine ◽  
Maarten Krol ◽  
Twan van Noije ◽  
Philippe Le Sager ◽  
Thomas Röckmann

Abstract. The representation of aerosol–cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by −3.0 to −8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a −10 to −11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by −11 to −19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite measurements does not improve significantly. We show, however, that aerosol resuspension has a considerable impact on the modelled aerosol distribution and needs to be taken into account.


Sign in / Sign up

Export Citation Format

Share Document