scholarly journals Emergent Behavior and Uncertainty in Multimodel Climate Projections of Precipitation Trends at Small Spatial Scales

2006 ◽  
Vol 19 (21) ◽  
pp. 5554-5569 ◽  
Author(s):  
P. Good ◽  
J. Lowe

Abstract Aspects of model emergent behavior and uncertainty in regional- and small-scale effects of increasing CO2 on seasonal (June–August) precipitation are explored. Nineteen different climate models are studied. New methods of comparing multiple climate models reveal a clearer and more impact-relevant view of precipitation projections for the current century. First, the importance of small spatial scales in multimodel projections is demonstrated. Local trends can be much larger than or even have an opposing sign to the large-scale regional averages used in previous studies. Small-scale effects of increasing CO2 and natural internal variability both play important roles here. These small-scale features make multimodel comparisons difficult for precipitation. New methods that allow information from small spatial scales to be usefully compared across an ensemble of multiple models are presented. The analysis philosophy of this study works with statistical distributions of small-scale variations within climatological regions. A major result of this work is a set of emergent relationships coupling the small- and regional-scale effects of CO2 on precipitation trends. Within each region, a single relationship fits the ensemble of 19 different climate models. Using these relationships, a surprisingly large part of the intermodel variance in small-scale effects of CO2 is explainable simply by the intermodel variance in the regional mean (a form of pattern scaling). Different regions show distinctly different relationships. These relationships imply that regional mean results are still useful, as long as the interregional variation in their relationship with impact-relevant extreme trends is recognized. These relationships are used to present a clear but rich picture of an aspect of model uncertainty, characterized by the intermodel spread in seasonal precipitation trends, including information from small spatial scales.

2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


Author(s):  
Douglas Maraun

Global climate models are our main tool to generate quantitative climate projections, but these models do not resolve the effects of complex topography, regional scale atmospheric processes and small-scale extreme events. To understand potential regional climatic changes, and to provide information for regional-scale impact modeling and adaptation planning, downscaling approaches have been developed. Regional climate change modeling, even though it is still a matter of basic research and questioned by many researchers, is urged to provide operational results. One major downscaling class is statistical downscaling, which exploits empirical relationships between larger-scale and local weather. The main statistical downscaling approaches are perfect prog (often referred to as empirical statistical downscaling), model output statistics (which is typically some sort of bias correction), and weather generators. Statistical downscaling complements or adds to dynamical downscaling and is useful to generate user-tailored local-scale information, or to efficiently generate regional scale information about mean climatic changes from large global climate model ensembles. Further research is needed to assess to what extent the assumptions underlying statistical downscaling are met in typical applications, and to develop new methods for generating spatially coherent projections, and for including process-understanding in bias correction. The increasing resolution of global climate models will improve the representation of downscaling predictors and will, therefore, make downscaling an even more feasible approach that will still be required to tailor information for users.


2014 ◽  
Vol 27 (17) ◽  
pp. 6779-6798 ◽  
Author(s):  
Benoit Hingray ◽  
Mériem Saïd

Abstract A simple and robust framework is proposed for the partitioning of the different components of internal variability and model uncertainty in an unbalanced multimember multimodel ensemble (MM2E) of climate projections obtained for a suite of statistical downscaling models (SDMs) and global climate models (GCMs). It is based on the quasi-ergodic assumption for transient climate simulations. Model uncertainty components are estimated from the noise-free signals of the different modeling chains using a two-way analysis of variance (ANOVA) framework. The residuals from the noise-free signals are used to estimate the large- and small-scale internal variability components associated with each considered GCM–SDM configuration. This framework makes it possible to take into account all members available from any climate ensemble of opportunity. Uncertainty is quantified as a function of lead time for projections of changes in temperature and precipitation produced for a mesoscale alpine catchment. Internal variability accounts for more than 80% of total uncertainty in the first decades. This proportion decreases to less than 10% at the end of the century for temperature but remains greater than 50% for precipitation. Small-scale internal variability is negligible for temperature; however, it is similar to the large-scale component for precipitation, whatever the projection lead time. SDM uncertainty is always greater than GCM uncertainty for precipitation. It is also greater for temperature in the middle of the century. The response-to-uncertainty ratio is very high for temperature. For precipitation, it is always less than one, indicating that even the sign of change is uncertain.


1998 ◽  
Vol 55 (S1) ◽  
pp. 303-311 ◽  
Author(s):  
John D Armstrong ◽  
James WA Grant ◽  
Harvey L Forsgren ◽  
Kurt D Fausch ◽  
Richard M DeGraaf ◽  
...  

The need for integration across spatial and temporal scales in applying science to the management of Atlantic salmon is considered. The factors that are currently believed to affect the production of anadromous adult Atlantic salmon (synthesized from recent reviews) are arranged in a hierarchy in which any given process overrides those processes at lower levels. There is not a good correlation between levels in the process hierarchy and levels in hierarchies of scale. This demonstrates the importance of integrating across scales in identifying the optimum foci for targeting management action. It is not possible to generalize on the need for integration across scales within management plans. This is because of the complex ecology of salmon, the broad range of characteristics of the systems of which they are a part, and the fact that both local scale and broad scale management can have broad scale effects. Many uncertainties remain regarding the large-scale components of the ecology of salmon, the way that small-scale mechanisms interact with life histories, and the way that different factors interact to limit production of fish. When more is understood of these processes, it is likely that generalized rules might be developed to predict the management requirements for stream systems. In the meantime, it is essential that there is good integration among managers working at different scales and it is important that management systems operating at all spatial scales include high-calibre expertise to compensate for the present paucity of general rules.


2006 ◽  
Vol 134 (8) ◽  
pp. 2180-2190 ◽  
Author(s):  
Frauke Feser

Abstract Regional climate models (RCMs) are a widely used tool to describe regional-scale climate variability and change. However, the added value provided by such models is not well explored so far, and claims have been made that RCMs have little utility. Here, it is demonstrated that RCMs are indeed returning significant added value. Employing appropriate spatial filters, the scale-dependent skill of a state-of-the-art RCM (with and without nudging of large scales) is examined by comparing its skill with that of the global reanalyses driving the RCM. This skill is measured by pattern correlation coefficients of the global reanalyses or the RCM simulation and, as a reference, of an operational regional weather analysis. For the spatially smooth variable air pressure the RCM improves this aspect of the simulation for the medium scales if the RCM is driven with large-scale constraints, but not for the large scales. For the regionally more structured quantity near-surface temperature the added value is more obvious. The simulation of medium-scale 2-m temperature anomaly fields amounts to an increase of the mean pattern correlation coefficient up to 30%.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7035 ◽  
Author(s):  
Hannah J. White ◽  
Willson Gaul ◽  
Dinara Sadykova ◽  
Lupe León-Sánchez ◽  
Paul Caplat ◽  
...  

The impact of productivity on species diversity is often studied at small spatial scales and without taking additional environmental factors into account. Focusing on small spatial scales removes important regional scale effects, such as the role of land cover heterogeneity. Here, we use a regional spatial scale (10 km square) to establish the relationship between productivity and vascular plant species richness across the island of Ireland that takes into account variation in land cover. We used generalized additive mixed effects models to relate species richness, estimated from biological records, to plant productivity. Productivity was quantified by the satellite-derived enhanced vegetation index. The productivity-diversity relationship was fitted for three land cover types: pasture-dominated, heterogeneous, and non-pasture-dominated landscapes. We find that species richness decreases with increasing productivity, especially at higher productivity levels. This decreasing relationship appears to be driven by pasture-dominated areas. The relationship between species richness and heterogeneity in productivity (both spatial and temporal) varies with land cover. Our results suggest that the impact of pasture on species richness extends beyond field level. The effect of human modified landscapes, therefore, is important to consider when investigating classical ecological relationships, particularly at the wider landscape scale.


2006 ◽  
Vol 57 (6) ◽  
pp. 655 ◽  
Author(s):  
P. F. McKenzie ◽  
Alecia Bellgrove

Hormosira banksii is distributed throughout southern Australasia, but dispersal of propagules is thought to be limited. In the present study, the hypothesis that outbreeding depression occurs in H. banksii was tested by assessing fertilisation success and early development of embryos in crosses between populations at local to regional spatial scales. Hierarchical experiments were conducted at three spatial scales with nesting present within each scale: small scale (within a rocky shore population), intermediate scale (regions separated by 70 km) and large scale (450-km separation between two states: Victoria and Tasmania). In each experiment, eggs and sperm were crossed within and between each population located in the spatial scale of interest. There were no consistent patterns of variable fertilisation success and subsequent development within a population or at different spatial scales. It was concluded that outbreeding depression is not detected in analyses of fertilisation success or early development processes in H. banksii. The results suggest one of the following to be likely: (1) H. banksii is capable of longer distance dispersal than previously considered, thus maintaining gene flow between distant populations, (2) gene flow is restricted by limited dispersal, but populations have not been isolated for a sufficient length of time to cause genetic divergence or (3) outbreeding depression is manifested as effects on later life-history stages.


2017 ◽  
Vol 145 (10) ◽  
pp. 4303-4311 ◽  
Author(s):  
Benjamin Schaaf ◽  
Hans von Storch ◽  
Frauke Feser

Spectral nudging is a method that was developed to constrain regional climate models so that they reproduce the development of the large-scale atmospheric state, while permitting the formation of regional-scale details as conditioned by the large scales. Besides keeping the large-scale development in the interior close to a given state, the method also suppresses the emergence of ensemble variability. The method is mostly applied to reconstructions of past weather developments in regions with an extension of typically 1000–8000 km. In this article, the authors examine if spectral nudging is having an effect on simulations with model regions of the size of about 700 km × 500 km at midlatitudes located mainly over flat terrain. First two pairs of simulations are compared, two runs each with and without spectral nudging, and it is found that the four simulations are very similar, without systematic or intermittent phases of divergence. Smooth fields, which are mainly determined by spatial patterns, such as air pressure, show hardly any differences, while small-scale and heterogeneous fields such as precipitation vary strongly, mostly on the gridpoint scale, irrespective if spectral nudging is employed or not. It is concluded that the application of spectral nudging has little effect on the simulation when the model region is relatively small.


2011 ◽  
Vol 24 (11) ◽  
pp. 2680-2692 ◽  
Author(s):  
David Masson ◽  
Reto Knutti

Abstract About 20 global climate models have been run for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) to predict climate change due to anthropogenic activities. Evaluating these models is an important step to establish confidence in climate projections. Model evaluation, however, is often performed on a gridpoint basis despite the fact that models are known to often be unreliable at such small spatial scales. In this study, the annual mean values of surface air temperature and precipitation are analyzed. Using a spatial smoothing technique with a variable-scale parameter it is shown that the intermodel spread, as well as model errors from observations, is reduced as the characteristic smoothing scale increases. At the same time, the ability to reproduce small-scale features is reduced and the simulated patterns become fuzzy. Depending on the variable of interest, the location, and the way that data are aggregated, different optimal smoothing scales from the gridpoint size to about 2000 km are found to give good agreement with present-day observation yet retain most regional features of the climate signal. Higher model resolution surprisingly does not imply much better agreement with temperature observations, in particular with stronger smoothing, and resolving smaller scales therefore does not necessarily seem to improve the simulation of large-scale climate features. Similarities in mean temperature and precipitation fields for a pair of models in the ensemble persist locally for about a century into the future, providing some justification for subtracting control errors in the models. Large-scale to global errors, however, are not well preserved over time, consistent with a poor constraint of the present-day climate on the simulated global temperature and precipitation response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


Sign in / Sign up

Export Citation Format

Share Document