scholarly journals Vertical Redistribution of Oceanic Heat Content

2015 ◽  
Vol 28 (9) ◽  
pp. 3821-3833 ◽  
Author(s):  
Xinfeng Liang ◽  
Carl Wunsch ◽  
Patrick Heimbach ◽  
Gael Forget

Abstract Estimated values of recent oceanic heat uptake are on the order of a few tenths of a W m−2, and are a very small residual of air–sea exchanges, with annual average regional magnitudes of hundreds of W m−2. Using a dynamically consistent state estimate, the redistribution of heat within the ocean is calculated over a 20-yr period. The 20-yr mean vertical heat flux shows strong variations in both the lateral and vertical directions, consistent with the ocean being a dynamically active and spatially complex heat exchanger. Between mixing and advection, the two processes determining the vertical heat transport in the deep ocean, advection plays a more important role in setting the spatial patterns of vertical heat exchange and its temporal variations. The global integral of vertical heat flux shows an upward heat transport in the deep ocean, suggesting a cooling trend in the deep ocean. These results support an inference that the near-surface thermal properties of the ocean are a consequence, at least in part, of internal redistributions of heat, some of which must reflect water that has undergone long trajectories since last exposure to the atmosphere. The small residual heat exchange with the atmosphere today is unlikely to represent the interaction with an ocean that was in thermal equilibrium at the start of global warming. An analogy is drawn with carbon-14 “reservoir ages,” which range from over hundreds to a thousand years.

2017 ◽  
Vol 30 (14) ◽  
pp. 5319-5327 ◽  
Author(s):  
Xinfeng Liang ◽  
Christopher G. Piecuch ◽  
Rui M. Ponte ◽  
Gael Forget ◽  
Carl Wunsch ◽  
...  

A dynamically and data-consistent ocean state estimate during 1993–2010 is analyzed for bidecadal changes in the mechanisms of heat exchange between the upper and lower oceans. Many patterns of change are consistent with prior studies. However, at various levels above 1800 m the global integral of the change in ocean vertical heat flux involves the summation of positive and negative regional contributions and is not statistically significant. The nonsignificance of change in the global ocean vertical heat transport from an ocean state estimate that provides global coverage and regular sampling, spatially and temporally, raises the question of whether an adequate observational database exists to assess changes in the upper ocean heat content over the past few decades. Also, whereas the advective term largely determines the spatial pattern of the change in ocean vertical heat flux, its global integral is not significantly different from zero. In contrast, the diffusive term, although regionally weak except in high-latitude oceans, produces a statistically significant extra downward heat flux during the 2000s. This result suggests that besides ocean advection, ocean mixing processes, including isopycnal and diapycnal as well as convective mixing, are important for the decadal variation of the heat exchange between upper and deep oceans as well. Furthermore, the analyses herein indicate that focusing on any particular region in explaining changes of the global ocean heat content is misleading.


2001 ◽  
Vol 431 ◽  
pp. 427-432 ◽  
Author(s):  
RODNEY A. WORTHING

Using the Hopf–Doering–Constantin decomposition, we derive upper bounds on the vertical heat flux in closed containers. It is found that the original bound of Doering & Constantin (1996) for Nusselt number as a function of Rayleigh number, Nu [ges ] √R/4, holds, at the very least, asymptotically as R → ∞ under reasonably diverse experimental settings.


2008 ◽  
Vol 25 (3) ◽  
pp. 401-415 ◽  
Author(s):  
Liguo Su ◽  
Richard L. Collins ◽  
David A. Krueger ◽  
Chiao-Yao She

Abstract A statistical study is presented of the errors in sodium Doppler lidar measurements of wind and temperature in the mesosphere that arise from the statistics of the photon-counting process that is inherent in the technique. The authors use data from the Colorado State University (CSU) sodium Doppler wind-temperature lidar, acquired at a midlatitude site, to define the statistics of the lidar measurements in different seasons under both daytime and nighttime conditions. The CSU lidar measurements are scaled, based on a 35-cm-diameter receiver telescope, to the use of large-aperture telescopes (i.e., 1-, 1.8-, and 3.5-m diameters). The expected biases in vertical heat flux measurements at a resolution of 480 m and 150 s are determined and compared to Gardner and Yang’s reported geophysical values of 2.3 K m s−1. A cross-correlation coefficient of 2%–7% between the lidar wind and temperature estimates is found. It is also found that the biases vary from −4 × 10−3 K m s−1 for wintertime measurements at night with a 3.5-m telescope to −61 K m s−1 for summertime measurements at midday with a 1-m telescope. During winter, at night, the three telescope systems yield biases in their heat flux measurements that are less than 10% of the reported value of the heat flux; and during summer, at night, the 1.8- and 3.5-m systems yield biases in their heat flux measurements that are less than 10% of the geophysical value. While during winter at midday the 3.5-m system yields biases in their heat flux measurements that are less than 10% of the geophysical value, during summer at midday all of the systems yield flux biases that are greater than the geophysical value of the heat flux. The results are discussed in terms of current lidar measurements and proposed measurements at high-latitude sites.


Sign in / Sign up

Export Citation Format

Share Document