scholarly journals Mechanisms Determining the Winter Atmospheric Response to the Atlantic Overturning Circulation

2016 ◽  
Vol 29 (10) ◽  
pp. 3767-3785 ◽  
Author(s):  
G. Gastineau ◽  
B. L’Hévéder ◽  
F. Codron ◽  
C. Frankignoul

Abstract In climate models, an intensification of the Atlantic meridional overturning circulation (AMOC) precedes a warming in the North Atlantic subpolar basin by a few years. In the IPSL-CM5A-LR model, this warming may explain the atmospheric response to the AMOC observed in winter, which resembles a negative phase of the North Atlantic Oscillation (NAO). To firmly establish the causality links between the ocean and the atmosphere and illustrate the underlying mechanisms in this model, ensembles of atmosphere-only simulations are conducted, prescribing the SST and sea ice anomalies that follow an AMOC intensification. In late winter, the North Atlantic SST and sea ice anomalies drive atmospheric circulation anomalies similar to those found in the coupled model. Simulations only driven by the SST anomalies related to the AMOC show that the largest oceanic influence is due to the warm subpolar SST anomaly, which enhances the oceanic heat release and decreases the lower-tropospheric baroclinicity in the region of maximum eddy growth, resulting in a weaker meridional eddy heat flux in the atmosphere. The transient eddy feedback leads to a negative NAO-like response. An AMOC intensification is also followed by less sea ice over the Labrador Sea and more sea ice over the Nordic seas. The simulations with full boundary forcing suggest that such anomalies act to strengthen both the poleward momentum flux and the upward heat flux into the polar stratosphere and lead to a stratospheric warming, which then reinforces the negative NAO signal in late winter.

2006 ◽  
Vol 36 (11) ◽  
pp. 2012-2024 ◽  
Author(s):  
Carl Wunsch ◽  
Patrick Heimbach

Abstract Results from a global 1° model constrained by least squares to a multiplicity of datasets over the interval 1992–2004 are used to describe apparent changes in the North Atlantic Ocean meridional overturning circulation and associated heat fluxes at 26°N. The least squares fit is both stable and adequately close to the data to make the analysis worthwhile. Changes over the 12 yr are spatially and temporally complex. A weak statistically significant trend is found in net North Atlantic volume flux above about 1200 m, which drops slightly (−0.19 ± 0.05 Sv yr−1; 1 Sv ≡ 106 m3 s−1) but with a corresponding strengthening of the outflow of North Atlantic Deep Water and inflow of abyssal waters. The slight associated trend in meridional heat flux is very small and not statistically significant. The month-to-month variability implies that single-section determinations of heat and volume flux are subject to serious aliasing errors.


2021 ◽  
Author(s):  
Mengdie Xie ◽  
John C. Moore ◽  
Liyun Zhao ◽  
Michael Wolovick ◽  
Helene Muri

Abstract. Climate models simulate lower rates of North Atlantic heat transport under greenhouse gas climates than at present due to a reduction in the strength of the North Atlantic meridional overturning circulation (AMOC). Solar geoengineering whereby surface temperatures are cooled by reduction of incoming shortwave radiation may be expected to ameliorate this effect. We investigate this using six Earth System Models running scenarios from GeoMIP (Geoengineering model intercomparison project) in the cases of: i) reduction in the solar constant, mimicking dimming of the sun; ii) sulfate aerosol injection into the lower equatorial stratosphere; and iii) brightening of the ocean regions mimicking enhancing tropospheric cloud amounts. We find that despite across model differences, AMOC decreases are attributable to reduced air-ocean temperature differences, and reduced September Arctic sea ice extent, with no significant impact from changing surface winds or precipitation-evaporation. Reversing the surface freshening of the North Atlantic overturning regions caused by decreased summer sea ice sea helps to promote AMOC. Comparing the geoengineering types after normalizing them for the differences in top of atmosphere radiative forcing, we find that solar dimming is more effective than either marine cloud brightening or stratospheric aerosol injection.


2008 ◽  
Vol 38 (9) ◽  
pp. 2104-2107 ◽  
Author(s):  
Peter M. Saunders ◽  
Stuart A. Cunningham ◽  
Beverly A. de Cuevas ◽  
Andrew C. Coward

Abstract It is demonstrated that current level models, both with and without assimilation, generate too shallow an overturning in the North Atlantic (just like their predecessors) because they do not reproduce the descent of plumes of cold water from the Greenland and Norwegian Seas. Consequently, the prediction of decadal change from one such model reported by C. Wunsch and P. Heimbach is queried.


2015 ◽  
Vol 72 (2) ◽  
pp. 821-833 ◽  
Author(s):  
Lenka Novak ◽  
Maarten H. P. Ambaum ◽  
Rémi Tailleux

Abstract The North Atlantic eddy-driven jet exhibits latitudinal variability with evidence of three preferred latitudinal locations: south, middle, and north. Here the authors examine the drivers of this variability and the variability of the associated storm track. The authors investigate the changes in the storm-track characteristics for the three jet locations and propose a mechanism by which enhanced storm-track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy, which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. The authors’ results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet-deflecting effect was found to operate most prominently downstream of the storm-track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm-track characteristics can be viewed as different stages of the storm track’s spatiotemporal life cycle.


2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.


2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

<p>While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.</p><p>Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.</p><p> </p><p>References</p><p>Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228–232.</p><p>Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.</p><p>Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.</p><p>Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., Müller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.</p><p>Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.</p><p>Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.</p>


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


Sign in / Sign up

Export Citation Format

Share Document