scholarly journals Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea

2016 ◽  
Vol 29 (7) ◽  
pp. 2529-2541 ◽  
Author(s):  
Jacob L. Høyer ◽  
Ioanna Karagali

Abstract A 30-yr climate data record (CDR) of sea surface temperature (SST) has been produced with daily gap-free analysis fields for the North Sea and the Baltic Sea region from 1982 to 2012 by combining the Pathfinder AVHRR satellite data record with the Along-Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) dataset and with in situ observations. A dynamical bias correction scheme adjusts the Pathfinder observations toward the ARC and in situ observations. Largest Pathfinder–ARC differences are found in the summer months, when the Pathfinder observations are up to 0.4°C colder than the ARC observations on average. Validation against independent in situ observations shows a very stable performance of the data record, with a mean difference of −0.06°C compared to moored buoys and a 0.46°C standard deviation of the differences. The mean annual biases of the SST CDR are small for all years, with a negligible temporal trend when compared against drifting and moored buoys. Analysis of the SST CDR reveals that the monthly anomalies for the North Sea, the Danish straits, and the central Baltic Sea regions show a high degree of correlation for interannual and decadal time scales, whereas the monthly variability differs from one region to another. The linear trends of the 1982–2012 SST anomaly time series range from 0.037°C yr−1 for the North Sea to 0.041°C yr−1 for the Baltic Sea.

2017 ◽  
Vol 14 (6) ◽  
pp. 1419-1444 ◽  
Author(s):  
David A. Ford ◽  
Johan van der Molen ◽  
Kieran Hyder ◽  
John Bacon ◽  
Rosa Barciela ◽  
...  

Abstract. Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical–biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled with detailed validation studies, in order to help facilitate the wider application of marine biogeochemical modelling to user and policy needs.


2014 ◽  
Vol 14 (15) ◽  
pp. 21943-21974 ◽  
Author(s):  
J. E. Jonson ◽  
J. P. Jalkanen ◽  
L. Johansson ◽  
M. Gauss ◽  
H. A. C. Denier van der Gon

Abstract. Land-based emissions of air pollutants in Europe have steadily decreased over the past two decades, and this decrease is expected to continue. Within the same time span emissions from shipping have increased, although recently sulphur emissions, and subsequently particle emissions, have decreased in EU ports and in the Baltic Sea and the North Sea, defined as SECAs (Sulphur Emission Control Areas). The maximum allowed sulphur content in marine fuels in EU ports is now 0.1%, as required by the European Union sulphur directive. In the SECAs the maximum fuel content of sulphur is currently 1% (the global average is about 2.4%). This will be reduced to 0.1% from 2015, following the new IMO rules (International Maritime Organisation). In order to assess the effects of ship emissions in and around the Baltic Sea and the North Sea, regional model calculations with the EMEP air pollution model have been made on a 1/4° longitude × 1/8° latitude resolution, using ship emissions in the Baltic Sea and the North Sea that are based on accurate ship positioning data. The effects on depositions and air pollution and the resulting number of years of life lost (YOLL) have been calculated by comparing model calculations with and without ship emissions in the two sea areas. The calculations have been made with emissions representative of 2009 and 2011, i.e. before and after the implementation of stricter controls on sulphur emissions from mid 2010. The calculations with present emissions show that per person, an additional 0.1–0.2 years of life lost is estimated in areas close to the major ship tracks with present emission levels. Comparisons of model calculations with emissions before and after the implementation of stricter emission control on sulphur show a general decrease in calculated particle concentration. At the same time, however, an increase in ship activity has resulted in higher emissions and subsequently air concentrations, in particular of NOx, especially in and around several major ports. Additional model calculations have been made with land based and ship emissions representative of year 2030. Following a decrease in emissions, air quality is expected to improve, and depositions to be reduced. Particles from shipping are expected to decrease as a result of emission controls in the SECAs. Further controls of NOx emissions from shipping are not decided, and calculations are presented with and without such controls.


2019 ◽  
Vol 6 (9) ◽  
pp. 190886 ◽  
Author(s):  
Aurora García-Berro ◽  
Johanna Yliportimo ◽  
Kai Lindström ◽  
Charlotta Kvarnemo

The operational sex ratio (OSR, ready-to-mate males to females) is a key factor determining mating competition. A shortage of a resource essential for reproduction of one sex can affect OSR and lead to competition within the opposite sex for resource-holding mates. In the sand goby ( Pomatoschistus minutus ), a fish with paternal care, male readiness to mate depends on acquiring a nest-site, whereas food abundance primarily impacts female egg production. Comparing body condition and gonadal investment of fish from two populations with different availability in resources (Baltic Sea: few nest-sites, more food; North Sea: many nest-sites, less food), we predicted females carrying more mature eggs in the Baltic Sea than in the North Sea. As predicted, ovaries were larger in Baltic Sea females, and so was the liver (storage of energy reserves and vitellogenic compounds) for both sexes, but particularly for females. More females were judged (based on roundness scores) to be ready to spawn in the Baltic Sea. Together with a nest colonization experiment confirming a previously documented difference between the two areas in nest-site availability, these results indicate a more female-biased OSR in the Baltic Sea population, compared to the North Sea, and generates a prediction that female–female competition for mating opportunities is stronger in the Baltic population. To our knowledge, this is the first time that female reproductive investment is discussed in relation to OSR using field data.


2016 ◽  
Vol 162-163 ◽  
pp. 289-299 ◽  
Author(s):  
A. Daraoui ◽  
L. Tosch ◽  
M. Gorny ◽  
R. Michel ◽  
I. Goroncy ◽  
...  

2012 ◽  
Vol 5 (5) ◽  
pp. 1085-1098 ◽  
Author(s):  
N. Berg ◽  
J. Mellqvist ◽  
J.-P. Jalkanen ◽  
J. Balzani

Abstract. A unique methodology to measure gas fluxes of SO2 and NO2 from ships using optical remote sensing is described and demonstrated in a feasibility study. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. A simple geometric approximation is used to calculate the optical path. To obtain the total emission in kg h−1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h−1, and the average NO2 emission was (33 ± 8) kg h−1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h−1, NO2 was not measured here. The detection limit of the system made it possible to detect SO2 in the ship plumes in 60% of the measurements when the described method was used. A comparison exercise was carried out by conducting airborne optical measurements on a passenger ferry in parallel with onboard measurements. The comparison shows agreement of (−30 ± 14)% and (−41 ± 11)%, respectively, for two days, with equal measurement precision of about 20%. This gives an idea of the measurement uncertainty caused by errors in the simple geometric approximation for the optical light path neglecting scattering of the light in ocean waves and direct and multiple scattering in the exhaust plume under various conditions. A tentative error budget indicates uncertainties within 30–45% but for a reliable error analysis the optical light path needs to be modelled. A ship emission model, FMI-STEAM, has been compared to the optical measurements showing an 18% overestimation and a correlation coefficient (R2) of 0.6. It is shown that a combination of the optical method with modelled power consumption can estimate the sulphur fuel content within 40%, which would be sufficient to detect the difference between ships running at 1% and at 0.1%, limits applicable within the IMO regulated areas.


Author(s):  
Anders Galatius ◽  
Carl Christian Kinze ◽  
Jonas Teilmann

The harbour porpoise is seriously depleted and threatened with extinction in the Baltic Sea. It is usually assumed that Baltic porpoises form a separate population unit, although the evidence for this has been disputed lately. Here, a 3-D geometric morphometric approach was employed to test a number of hypotheses regarding population structure of the harbour porpoise in the Baltic region. 277 porpoise skulls from Denmark, Sweden, Finland, Germany and Poland were measured with a suite of 3-D landmarks. Statistical analyses revealed highly significant shape differences between porpoises from the North Sea, Belt Sea and the inner Baltic Sea. A comparison of the directionalities of the shape vectors between these units found differences that cannot be attributed to a general, continual shape trend going from the North Sea to the inner Baltic Sea. These vectors indicate a morphological adaptation to the specific sub-areas. Such adaptation may be the result of the topographic peculiarities of the area with variable topography and shallow waters, e.g. in the Belt Sea porpoises, there may be a greater reliance on benthic and demersal prey. The present results show that isolation by distance alone is an unlikely explanation for the differences found within the Baltic region and thus support previously reported molecular indications of a separate population within the inner Baltic Sea.


2018 ◽  
Vol 22 (1) ◽  
pp. 241-263 ◽  
Author(s):  
Yu Zhang ◽  
Ming Pan ◽  
Justin Sheffield ◽  
Amanda L. Siemann ◽  
Colby K. Fisher ◽  
...  

Abstract. Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5∘ spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET-R-TWSC= 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5∘ resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.


Sign in / Sign up

Export Citation Format

Share Document