Assessing the climate response to regional sea ice change across all Arctic regions.

Author(s):  
Xavier Levine ◽  
Ivana Cvijanovic ◽  
Pablo Ortega ◽  
Markus Donat

<p>Climate models predict that sea ice cover will shrink--even disappear-- in most regions of the Arctic basin by the end of the century, triggering local and remote responses in the surface climate via atmospheric and oceanic circulation changes. In particular, it has been suggested that seasonal anomalies over Europe and North America in recent years could have been caused by record low Arctic sea ice cover. Despite an intense research effort toward quantifying its effect, the contribution of regional sea ice loss to climate change and its mechanisms of action remain controversial. </p><p>In this study, we prescribe sea ice loss in individual sectors of the Arctic within a climate model, and study its effect on climatic anomalies in the Northern Hemisphere. Using the EC-EARTH3.3 model in its atmospheric-only and fully coupled configuration, and following the PAMIP protocol, sea ice cover is set to either its present day state, or a hypothetical future distribution of reduced sea ice cover in the Arctic. This pan-Arctic sea ice loss experiment is then complemented by 8 regional sea ice loss experiments.</p><p>Comparing those experiments, we assess the contribution of sea ice loss in each region of the Arctic to climate change over Europe, Siberia and North America. We find that sea ice loss in some sectors of the Arctic appears to matter more for Northern Hemisphere climate change than others, even after normalizing for differences in surface cover. Furthermore, the climatic effect of regional sea ice loss is compared to that of a pan-Arctic sea ice loss, whose associated climate anomalies are found to be strikingly different from that expected from a simple linear response to regional sea ice loss. We propose a mechanism for this nonlinear climate response to regional sea ice loss, which considers regional differences in the strength of the thermal inversion over the Arctic, as well as the relative proximity of each Arctic region to features critical for stationary wave genesis (e.g. the Tibetan plateau).</p>

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xavier J. Levine ◽  
Ivana Cvijanovic ◽  
Pablo Ortega ◽  
Markus G. Donat ◽  
Etienne Tourigny

AbstractArctic sea-ice loss is a consequence of anthropogenic global warming and can itself be a driver of climate change in the Arctic and at lower latitudes, with sea-ice minima likely favoring extreme events over Europe and North America. Yet the role that the sea-ice plays in ongoing climate change remains uncertain, partly due to a limited understanding of whether and how the exact geographical distribution of sea-ice loss impacts climate. Here we demonstrate that the climate response to sea-ice loss can vary widely depending on the pattern of sea-ice change, and show that this is due to the presence of an atmospheric feedback mechanism that amplifies the local and remote signals when broader scale sea-ice loss occurs. Our study thus highlights the need to better constrain the spatial pattern of future sea-ice when assessing its impacts on the climate in the Arctic and beyond.


2018 ◽  
Vol 45 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Noel Keenlyside ◽  
Yongqi Gao ◽  
Torben Koenigk ◽  
Shuting Yang ◽  
...  

2016 ◽  
Vol 29 (21) ◽  
pp. 7831-7849 ◽  
Author(s):  
Hans W. Chen ◽  
Fuqing Zhang ◽  
Richard B. Alley

Abstract The significance and robustness of the link between Arctic sea ice loss and changes in midlatitude weather patterns is investigated through a series of model simulations from the Community Atmosphere Model, version 5.3, with systematically perturbed sea ice cover in the Arctic. Using a large ensemble of 10 sea ice scenarios and 550 simulations, it is found that prescribed Arctic sea ice anomalies produce statistically significant changes for certain metrics of the midlatitude circulation but not for others. Furthermore, the significant midlatitude circulation changes do not scale linearly with the sea ice anomalies and are not present in all scenarios, indicating that the remote atmospheric response to reduced Arctic sea ice can be statistically significant under certain conditions but is generally nonrobust. Shifts in the Northern Hemisphere polar jet stream and changes in the meridional extent of upper-level large-scale waves due to the sea ice perturbations are generally small and not clearly distinguished from intrinsic variability. Reduced Arctic sea ice may favor a circulation pattern that resembles the negative phase of the Arctic Oscillation and may increase the risk of cold outbreaks in eastern Asia by almost 50%, but this response is found in only half of the scenarios with negative sea ice anomalies. In eastern North America the frequency of extreme cold events decreases almost linearly with decreasing sea ice cover. This study’s finding of frequent significant anomalies without a robust linear response suggests interactions between variability and persistence in the coupled system, which may contribute to the lack of convergence among studies of Arctic influences on midlatitude circulation.


2021 ◽  
pp. 1-61
Author(s):  
Svenya Chripko ◽  
Rym Msadek ◽  
Emilia Sanchez-Gomez ◽  
Laurent Terray ◽  
Laurent Bessières ◽  
...  

AbstractThe Northern Hemisphere transient atmospheric response to Arctic sea decline is investigated in autumn and winter, using sensitivity experiments performed with the CNRMCM6-1 high-top climate model. Arctic sea ice albedo is reduced to the ocean value, yielding ice-free conditions during summer and a more moderate sea ice reduction during the following months. A strong ampli_cation of temperatures over the Arctic is induced by sea ice loss, with values reaching up to 25°C near the surface in autumn. Signi_cant surface temperature anomalies are also found over the mid-latitudes, with a warming reaching 1°C over North America and Europe, and a cooling reaching 1°C over central Asia. Using a dynamical adjustment method based on a regional reconstruction of circulation analogs, we show that the warming over North America and Europe can be explained both by changes in the atmospheric circulation and by the advection of warmer oceanic air by the climatological ow. In contrast, we demonstrate that the sea-ice induced cooling over central Asia is solely due to dynamical changes, involving an intensi_cation of the Siberian High and a cyclonic anomaly over the Sea of Okhotsk. In the troposphere, the abrupt Arctic sea ice decline favours a narrowing of the subtropical jet stream and a slight weakening of the lower part of the polar vortex that is explained by a weak enhancement of upward wave activity toward the stratosphere. We further show that reduced Arctic sea ice in our experiments is mainly associated with less severe cold extremes in the mid-latitudes.


2020 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>The predominantly Inupiat people of Utqiaġvik, Alaska are among those who will be most impacted by<br>climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals<br>associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and<br>infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and<br>Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change,<br>the subject is not often discussed in the elementary school curriculum. Meanwhile, in many other parts<br>of the world, the impacts of climate change are viewed as abstract and remote. We worked with fifth<br>grade children in Utqiaġvik both to educate them, but also to engage them in helping us communicate<br>to rest of the world, in an emotionally resonant way, the direct impacts of climate change on families in<br>this Arctic region.<br>The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of<br>Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students<br>each at Fred Ipalook Elementary in Utqiaġvik, AK. The scientist gave a short lecture about sea ice and<br>climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure (with<br>interjections from the local outreach specialist). We then showed the students a large poster of<br>historical and projected sea ice decline, and asked the students to help us fill in the white space beneath<br>the lines. The artist led the children in making small art pieces that represent things that are important<br>to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever<br>they wanted). We returned to the class later that week and had each student briefly introduce<br>themselves and their painting, and place it to the large graph of sea ice decline, which included the dire<br>predictions of the RCP8.5 scenario. At the end we added the more hopeful RCP2.6 scenario to end on a<br>positive note. The artist then painted in the more hopeful green line by hand.<br>The result was a poster showing historical and projected Arctic sea ice cover, with 100 beautiful<br>paintings by children of things that are dear to them about their home being squeezed into a smaller<br>region as the sea ice cover diminishes. We scanned all the artwork to make a digital version of the<br>poster, and left the original with the school. These materials are being converted into an interactive<br>webpage where viewers can click on the individual painting for detail, and get selected recordings of the<br>children’s statements about their artwork. This project can serve as a nucleus for communicating to<br>other classes and adults about the real impacts of climate change in people’s lives.</p>


2018 ◽  
Vol 31 (22) ◽  
pp. 9193-9206 ◽  
Author(s):  
Russell Blackport ◽  
Paul J. Kushner

The role of extratropical ocean warming in the coupled climate response to Arctic sea ice loss is investigated using coupled atmosphere–ocean general circulation model (AOGCM) and uncoupled atmospheric-only (AGCM) experiments. Coupled AOGCM experiments driven by sea ice albedo reduction and greenhouse gas–dominated radiative forcing are used to diagnose the extratropical sea surface temperature (SST) response to sea ice loss. Sea ice loss is then imposed in AGCM experiments both with and without these extratropical SST changes, which are found to extend beyond the regions where sea ice is lost. Sea ice loss in isolation drives warming that is confined to the Arctic lower troposphere and only a weak atmospheric circulation response. When the extratropical SST response caused by sea ice loss is also included in the forcing, the warming extends into the Arctic midtroposphere during winter. This coincides with a stronger atmospheric circulation response, including an equatorward shift in the eddy-driven jet, a deepening of the Aleutian low, and an expansion of the Siberian high. Similar results are found whether the extratropical SST forcing is taken directly from the AOGCM driven by sea ice loss, or whether they are diagnosed using a two-parameter pattern scaling technique where tropical adjustment to sea ice loss is removed. These results suggest that AGCM experiments that are driven by sea ice loss and only local SST increases will underestimate the Arctic midtroposphere warming and atmospheric circulation response to sea ice loss, compared to AOGCM simulations and the real world.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Mats Granskog ◽  
Philipp Assmy ◽  
Sebastian Gerland ◽  
Gunnar Spreen ◽  
Harald Steen ◽  
...  

Scientists embarked on a 6-month expedition in the Arctic Ocean to study the thinning sea ice cover, improve our understanding of sea ice loss effects, and help predict future changes.


2018 ◽  
Vol 31 (19) ◽  
pp. 7823-7843 ◽  
Author(s):  
Lantao Sun ◽  
Michael Alexander ◽  
Clara Deser

The role of transient Arctic sea ice loss in the projected greenhouse gas–induced late-twentieth- to late-twenty-first-century climate change is investigated using the Geophysical Fluid Dynamics Laboratory’s Coupled Model version 3. Two sets of simulations have been conducted, one with representative concentration pathway (RCP) 8.5 radiative forcing and the second with RCP forcing but with Arctic sea ice nudged to its 1990 state. The difference between the two five-member sets indicates the influence of decreasing Arctic sea ice on the climate system. Within the Arctic, sea ice loss is found to be a primary driver of the surface temperature and precipitation changes. Arctic sea ice depletion also plays a dominant role in projected Atlantic meridional overturning circulation weakening and changes in North Atlantic extratropical sea surface temperature and salinity, especially in the first half century. The effect of present-day Arctic sea ice loss on Northern Hemisphere (NH) extratropical atmospheric circulation is small relative to internal variability and the future sea ice loss effect on atmospheric circulation is distinct from the projected anthropogenic change. Arctic sea ice loss warms NH extratropical continents and is an important contributor to global warming not only over high latitudes but also in the eastern United States. Last, the Arctic sea ice loss displaces the Pacific intertropical convergence zone (ITCZ) equatorward and induces a “mini-global warming” in the tropical upper troposphere.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2011 ◽  
Vol 57 (202) ◽  
pp. 231-237 ◽  
Author(s):  
David Marsan ◽  
Jérôme Weiss ◽  
Jean-Philippe Métaxian ◽  
Jacques Grangeon ◽  
Pierre-François Roux ◽  
...  

AbstractWe report the detection of bursts of low-frequency waves, typically f = 0.025 Hz, on horizontal channels of broadband seismometers deployed on the Arctic sea-ice cover during the DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies) experiment in spring 2007. These bursts have amplitudes well above the ambient ice swell and a lower frequency content. Their typical duration is of the order of minutes. They occur at irregular times, with periods of relative quietness alternating with periods of strong activity. A significant correlation between the rate of burst occurrences and the ice-cover deformation at the ∼400 km scale centered on the seismic network suggests that these bursts are caused by remote, episodic deformation involving shearing across regional-scale leads. This observation opens the possibility of complementing satellite measurements of ice-cover deformation, by providing a much more precise temporal sampling, hence a better characterization of the processes involved during these deformation events.


Sign in / Sign up

Export Citation Format

Share Document