scholarly journals The Present-Day Simulation and Twenty-First-Century Projection of the Climatology of Extratropical Transition in the North Atlantic

2017 ◽  
Vol 30 (8) ◽  
pp. 2739-2756 ◽  
Author(s):  
Maofeng Liu ◽  
Gabriel A. Vecchi ◽  
James A. Smith ◽  
Hiroyuki Murakami

This study explores the simulations and twenty-first-century projections of extratropical transition (ET) of tropical cyclones (TCs) in the North Atlantic, with a newly developed global climate model: the Forecast-Oriented Low Ocean Resolution (FLOR) version of the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model version 2.5 (CM2.5). FLOR exhibits good skill in simulating present-day ET properties (e.g., cyclone phase space parameters). A version of FLOR in which sea surface temperature (SST) biases are artificially corrected through flux-adjustment (FLOR-FA) shows much improved simulation of ET activity (e.g., annual ET number). This result is largely attributable to better simulation of basinwide TC activity, which is strongly dependent on larger-scale climate simulation. FLOR-FA is also used to explore changes of ET activity in the twenty-first century under the representative concentration pathway (RCP) 4.5 scenario. A contrasting pattern is found in which regional TC density increases in the eastern North Atlantic and decreases in the western North Atlantic, probably due to changes in the TC genesis location. The increasing TC frequency in the eastern Atlantic is dominated by increased ET cases. The increased density of TCs undergoing ET in the eastern subtropics of the Atlantic shows two propagation paths: one moves northwest toward the northeast coast of the United States and the other moves northeast toward western Europe, implying increased TC-related risks in these regions. A more TC-favorable future climate, evident in the projected changes of SST and vertical wind shear, is hypothesized to favor the increased ET occurrence in the eastern North Atlantic.

2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2010 ◽  
Vol 23 (23) ◽  
pp. 6382-6393 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held

Abstract A statistical intensity adjustment is utilized to extract information from tropical cyclone simulations in a 50-km-resolution global model. A simple adjustment based on the modeled and observed probability distribution of storm lifetime maximum wind speed allows the model to capture the differences between observed intensity distributions in active/inactive year composites from the 1981–2008 period in the North Atlantic. This intensity adjustment is then used to examine the atmospheric model’s responses to different sea surface temperature anomalies generated by coupled models for the late twenty-first century. In the North Atlantic all simulations produce a reduction in the total number of cyclones, but with large intermodel spread in the magnitude of the reduction. The intensity response is positively correlated with changes in frequency across the ensemble. However, there is, on average, an increase in intensity in these simulations despite the mean reduction in frequency. The authors argue that it is useful to decompose these intensity changes into two parts: an increase in intensity that is intrinsic to the climate change experiments and a change in intensity positively correlated with frequency, just as in the active/inactive historical composites. By isolating the intrinsic component, which is relatively independent of the details of the SST warming pattern, an increase is found in storm-lifetime maximum winds of 5–10 m s−1 for storms with intensities of 30–60 m s−1, by the end of the twenty-first century. The effects of change in frequency, which are dependent on the details of the spatial structure of the warming, must then be superimposed on this intrinsic change.


2013 ◽  
Vol 26 (16) ◽  
pp. 6046-6066 ◽  
Author(s):  
Yalin Fan ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Xiaolan L. Wang

Abstract Surface wind (U10) and significant wave height (Hs) response to global warming are investigated using a coupled atmosphere–wave model by perturbing the sea surface temperatures (SSTs) with anomalies generated by the Working Group on Coupled Modeling (WGCM) phase 3 of the Coupled Model Intercomparison Project (CMIP3) coupled models that use the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)/Special Report on Emissions Scenarios A1B (SRES A1B) scenario late in the twenty-first century. Several consistent changes were observed across all four realizations for the seasonal means: robust increase of U10 and Hs in the Southern Ocean for both the austral summer and winter due to the poleward shift of the jet stream; a dipole pattern of the U10 and Hs with increases in the northeast sector and decreases at the midlatitude during boreal winter in the North Atlantic due to the more frequent occurrence of the positive phases of the North Atlantic Oscillation (NAO); and strong decrease of U10 and Hs in the tropical western Pacific Ocean during austral summer, which might be caused by the joint effect of the weakening of the Walker circulation and the large hurricane frequency decrease in the South Pacific. Changes of the 99th percentile U10 and Hs are twice as strong as changes in the seasonal means, and the maximum changes are mainly dominated by the changes in hurricanes. Robust strong decreases of U10 and Hs in the South Pacific are obtained because of the large hurricane frequency decrease, while the results in the Northern Hemisphere basins differ among the models. An additional sensitivity experiment suggests that the qualitative response of U10 and Hs is not affected by using SST anomalies only and maintaining the radiative forcing unchanged (using 1980 values), as in this study.


2013 ◽  
Vol 26 (23) ◽  
pp. 9603-9620 ◽  
Author(s):  
Ngar-Cheung Lau ◽  
Jeffrey J. Ploshay

The impacts of climate change on the North America–North Atlantic–Europe sector are studied using a coupled general circulation model: the Climate Model, version 3 (CM3) and a high-resolution atmosphere-only model, the High Resolution Atmospheric Model (HiRAM)—both developed at the Geophysical Fluid Dynamics Laboratory. The CM3 experiment is conducted under two climate change scenarios for the 1860–2100 period. The sea surface temperature (SST) forcing prescribed in the “time slice” integrations with HiRAM is derived from observations for the 1979–2008 period and projection by CM3 for the 2086–95 period. The wintertime response in the late twenty-first century is characterized by an enhancement of the positive phase of the North Atlantic Oscillation in sea level pressure (SLP) and poleward and eastward displacements of the Atlantic jet stream and storm track. The forcing pattern due to eddy vorticity fluxes in the perturbed storm track matches well with the response pattern of the SLP field in the late twenty-first century. The model results suggest that the above circulation changes are linked to the gradient of the altered SST forcing in the North Atlantic. In summer, the projected enhancement of convection over the eastern tropical Pacific is accompanied by a wave train spanning the North America–North Atlantic–Europe sector. This quasi-stationary circulation pattern is associated with diminished storm track activity at 40°–50°N and an eddy forcing pattern similar to the summertime SLP response in the late twenty-first century.


2012 ◽  
Vol 29 (9) ◽  
pp. 1202-1220 ◽  
Author(s):  
Zheng Ki Yip ◽  
M. K. Yau

Abstract A methodology using artificial neural networks is presented to project twenty-first-century changes in North Atlantic tropical cyclone (TC) genesis potential (GP) in a five-model ensemble of global climate models. Two types of neural networks—the self-organizing maps (SOMs) and the forward-feeding back-propagating neural networks (FBNNs)—were employed. This methodology is demonstrated to be a robust alternative to using GCM output directly for tropical cyclone projections, which generally require high-resolution simulations. By attributing the projected changes to the related environmental variables, Emanuel’s revised genesis potential index is used to measure the GP. Changes are identified in the first (P1) and second (P2) half of the twenty-first century. The early and late summer GP decreases in both the P1 and P2 periods over most of the eastern half of the basin and increases off the East Coast of the United States and the north coast of Venezuela during P1. The peak summer GP over the region of frequent TC genesis is projected to decrease more substantially in P1 than in P2. Vertical wind shear (850–200 hPa), temperature (600 hPa), and potential intensity are the most important controls of TC genesis in the North Atlantic basin (NAB) under the changing climate.


2013 ◽  
Vol 26 (11) ◽  
pp. 3511-3527 ◽  
Author(s):  
Sanjiv Kumar ◽  
James Kinter ◽  
Paul A. Dirmeyer ◽  
Zaitao Pan ◽  
Jennifer Adams

Abstract The ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models to simulate the twentieth-century “warming hole” over North America is explored, along with the warming hole’s relationship with natural climate variability. Twenty-first-century warming hole projections are also examined for two future emission scenarios, the 8.5 and 4.5 W m−2 representative concentration pathways (RCP8.5 and RCP4.5). Simulations from 22 CMIP5 climate models were analyzed, including all their ensemble members, for a total of 192 climate realizations. A nonparametric trend detection method was employed, and an alternative perspective emphasizing trend variability. Observations show multidecadal variability in the sign and magnitude of the trend, where the twentieth-century temperature trend over the eastern United States appears to be associated with low-frequency (multidecadal) variability in the North Atlantic temperatures. Most CMIP5 climate models simulate significantly lower “relative power” in the North Atlantic multidecadal oscillations than observed. Models that have relatively higher skill in simulating the North Atlantic multidecadal oscillation also are more likely to reproduce the warming hole. It was also found that the trend variability envelope simulated by multiple CMIP5 climate models brackets the observed warming hole. Based on the multimodel analysis, it is found that in the twenty-first-century climate simulations the presence or absence of the warming hole depends on future emission scenarios; the RCP8.5 scenario indicates a disappearance of the warming hole, whereas the RCP4.5 scenario shows some chance (10%–20%) of the warming hole’s reappearance in the latter half of the twenty-first century, consistent with CO2 stabilization.


2016 ◽  
Vol 29 (22) ◽  
pp. 7977-7989 ◽  
Author(s):  
Hiroyuki Murakami ◽  
Gabriel A. Vecchi ◽  
Gabriele Villarini ◽  
Thomas L. Delworth ◽  
Richard Gudgel ◽  
...  

Abstract Skillful seasonal forecasting of tropical cyclone (TC; wind speed ≥17.5 m s−1) activity is challenging, even more so when the focus is on major hurricanes (wind speed ≥49.4 m s−1), the most intense hurricanes (category 4 and 5; wind speed ≥58.1 m s–1), and landfalling TCs. This study shows that a 25-km-resolution global climate model [High-Resolution Forecast-Oriented Low Ocean Resolution (FLOR) model (HiFLOR)] developed at the Geophysical Fluid Dynamics Laboratory (GFDL) has improved skill in predicting the frequencies of major hurricanes and category 4 and 5 hurricanes in the North Atlantic as well as landfalling TCs over the United States and Caribbean islands a few months in advance, relative to its 50-km-resolution predecessor climate model (FLOR). HiFLOR also shows significant skill in predicting category 4 and 5 hurricanes in the western North Pacific and eastern North Pacific, while both models show comparable skills in predicting basin-total and landfalling TC frequency in the basins. The improved skillful forecasts of basin-total TCs, major hurricanes, and category 4 and 5 hurricane activity in the North Atlantic by HiFLOR are obtained mainly by improved representation of the TCs and their response to climate from the increased horizontal resolution rather than by improvements in large-scale parameters.


2010 ◽  
Vol 23 (17) ◽  
pp. 4585-4607 ◽  
Author(s):  
Jianjun Yin ◽  
Stephen M. Griffies ◽  
Ronald J. Stouffer

Abstract A set of state-of-the-science climate models are used to investigate global sea level rise (SLR) patterns induced by ocean dynamics in twenty-first-century climate projections. The identified robust features include bipolar and bihemisphere seesaws in the basin-wide SLR, dipole patterns in the North Atlantic and North Pacific, and a beltlike pattern in the Southern Ocean. The physical and dynamical mechanisms that cause these patterns are investigated in detail using version 2.1 of the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model (CM2.1). Under the Intergovernmental Panel on Climate Change’s (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario, the steric sea level changes relative to the global mean (the local part) in different ocean basins are attributed to differential heating and salinity changes of various ocean layers and associated physical processes. As a result of these changes, water tends to move from the ocean interior to continental shelves. In the North Atlantic, sea level rises north of the Gulf Stream but falls to the south. The dipole pattern is induced by a weakening of the meridional overturning circulation. This weakening leads to a local steric SLR east of North America, which drives more waters toward the shelf, directly impacting northeastern North America. An opposite dipole occurs in the North Pacific. The dynamic SLR east of Japan is linked to a strong steric effect in the upper ocean and a poleward expansion of the subtropical gyre. In the Southern Ocean, the beltlike pattern is dominated by the baroclinic process during the twenty-first century, while the barotropic response of sea level to wind stress anomalies is significantly delayed.


1951 ◽  
Vol 5 (4) ◽  
pp. 825-832

With the development of certain administrative frictions (concerning coal quotas, occupation costs, and the scrap metal treaty) between the western occupying powers and the German Federal Republic, early indications were that if the talk of “contractual agreements” did materialize it would reserve, for the occupying powers, wide controls over important areas of west Germany's internal and external affairs. In Washington, however, a general modification of approach was noted during the September discussions between the United States Secretary of State (Acheson), the United Kingdom Foreign Secretary (Morrison), and the French Foreign Minister (Schuman), preparatory to the Ottawa meetings of the North Atlantic Council.


Sign in / Sign up

Export Citation Format

Share Document