scholarly journals Impact of Poleward Moisture Transport from the North Pacific on the Acceleration of Sea Ice Loss in the Arctic since 2002

2017 ◽  
Vol 30 (17) ◽  
pp. 6757-6769 ◽  
Author(s):  
H. J. Lee ◽  
M. O. Kwon ◽  
S.-W. Yeh ◽  
Y.-O. Kwon ◽  
W. Park ◽  
...  

Abstract Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.

2017 ◽  
Vol 30 (5) ◽  
pp. 1537-1552 ◽  
Author(s):  
Joe M. Osborne ◽  
James A. Screen ◽  
Mat Collins

Abstract The Arctic is warming faster than the global average. This disproportionate warming—known as Arctic amplification—has caused significant local changes to the Arctic system and more uncertain remote changes across the Northern Hemisphere midlatitudes. Here, an atmospheric general circulation model (AGCM) is used to test the sensitivity of the atmospheric and surface response to Arctic sea ice loss to the phase of the Atlantic multidecadal oscillation (AMO), which varies on (multi-) decadal time scales. Four experiments are performed, combining low and high sea ice states with global sea surface temperature (SST) anomalies associated with opposite phases of the AMO. A trough–ridge–trough response to wintertime sea ice loss is seen in the Pacific–North American sector in the negative phase of the AMO. The authors propose that this is a consequence of an increased meridional temperature gradient in response to sea ice loss, just south of the climatological maximum, in the midlatitudes of the central North Pacific. This causes a southward shift in the North Pacific storm track, which strengthens the Aleutian low with circulation anomalies propagating into North America. While the climate response to sea ice loss is sensitive to AMO-related SST anomalies in the North Pacific, there is little sensitivity to larger-magnitude SST anomalies in the North Atlantic. With background ocean–atmosphere states persisting for a number of years, there is the potential to improve predictions of the impacts of Arctic sea ice loss on decadal time scales.


2003 ◽  
Vol 16 (13) ◽  
pp. 2159-2177 ◽  
Author(s):  
Xiangdong Zhang ◽  
Moto Ikeda ◽  
John E. Walsh

Abstract Observational and modeling studies have indicated recent large changes of sea ice and hydrographic properties in the Arctic Ocean. However, the observational database is sufficiently sparse that the mechanisms responsible for the recent changes are not fully understood. A coupled Arctic ocean–sea ice model forced by output from the NCEP–NCAR reanalysis is employed to investigate the role that the leading atmospheric mode has played in the recent changes of the Arctic Ocean. A modified Arctic Oscillation (AO) index is derived for the region poleward of 62.5°N in order to avoid ambiguities in the distinction between the conventional AO and the North Atlantic Oscillation index. The model results indicate that the AO is the driver of many of the changes manifested in the recent observations. The model shows reductions of Arctic sea ice area and volume by 3.2% and 8.8%, respectively, when the AO changes from its negative to its positive phase. Concurrently, freshwater storage decreases by about 2%, while the sea ice and freshwater exports via Fram Strait increase substantially. The changes of sea ice and freshwater storage are strikingly asymmetric between the east and the west Arctic. Notable new findings include 1) the interaction of the dynamic and thermodynamic responses in the sense that changes of sea ice growth and melt are driven by, and feed back negatively to, the dynamically (transport) driven changes of sea ice volume; and 2) the compatibility of the associated freshwater changes with recently observed changes in the salinity of the upper Arctic Ocean, thereby explaining the observed salinity variations by a mechanism that is distinct from, but complementary to, the altered circulation of Siberian river water. In addition, the enhanced freshwater export could be a contributing factor to the increased salinity in the Arctic Ocean. The results of the simulations indicate that Arctic sea ice and freshwater distributions change substantially if one phase of the AO predominates over a decadal timescale. However, such results are based on an idealization of the real-world situation, in which the pattern of forcing varies interannually and the number of positive-AO years varies among decades.


2001 ◽  
Vol 42 (12) ◽  
pp. 1347-1356 ◽  
Author(s):  
Lee W Cooper ◽  
Gi H Hong ◽  
Tom M Beasley ◽  
Jacqueline M Grebmeier

2019 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Timo Vihma

Abstract. Arctic sea ice decrease in extent in recent decades has been linked to sea surface temperature (SST) anomalies in the North Pacific Ocean. In this study, we assess the relative contributions of the two leading modes in North Pacific SST anomalies representing external forcing related to global warming and internal forcing related to Pacific Decadal Oscillation (PDO) to the Arctic sea ice loss in boreal summer and autumn. For the 1979–2017 period, the time series of the global warming and PDO modes show significant positive and negative trends, respectively. The global warming mode accounts for 44.9 % and 50.1 % of the Arctic sea ice loss in boreal summer and autumn during this period, compared to the 20.0 % and 22.2 % from the PDO mode. There is also a seasonal difference in the response of atmospheric circulations to the two modes. The PDO mode excites a wavetrain from North Pacific to the Arctic; the wavetrain is not seen in the response of atmospheric circulation to the global warming mode. Both dynamic and thermodynamic forcings work in the relationship of atmospheric circulation and sea ice anomalies.


Sign in / Sign up

Export Citation Format

Share Document