scholarly journals Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis

2017 ◽  
Vol 30 (8) ◽  
pp. 2961-2988 ◽  
Author(s):  
Krzysztof Wargan ◽  
Gordon Labow ◽  
Stacey Frith ◽  
Steven Pawson ◽  
Nathaniel Livesey ◽  
...  

The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to the present is described herein, and its quality is assessed. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft between January 1980 and September 2004: starting in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10% (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2% and 24.5%, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period; however, MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

2016 ◽  
Author(s):  
Jiyoung Kim ◽  
Jhoon Kim ◽  
Hi-Ku Cho ◽  
Jay Herman ◽  
Sang Seo Park ◽  
...  

Abstract. Daily total column ozone (TCO) measured using the Pandora spectrophotometer (#19) was intercompared with data from the Dobson (#124) and Brewer (#148) spectrophotometers, as well as from the Ozone Monitoring Instrument (OMI), over the 2-year period between March 2012 and March 2014 at Yonsei University, Seoul, Korea. The Pandora TCO measurements are closely correlated with those from the Dobson, Brewer, and OMI instruments with regression coefficients (slopes) of 0.95, 1.00, 0.98 (OMI-TOMS), and 0.97 (OMI-DOAS), respectively, and determination coefficients (R2) of 0.95, 0.97, 0.96 (OMI-TOMS), and 0.95 (OMI-DOAS), respectively. In particular, they show a close agreement with the Brewer TCO measurements, with slope and R2 values of 1.00 and 0.97, respectively. The difference between the Pandora and Dobson data can be explained by smaller amount of Dobson data available to calculate the daily averages, observation times, solar zenith angles, SO2 effect, temperature, and humidity between the two datasets. The difference in the results obtained from the Pandora instrument and Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS algorithm) can be explained by the dependence on seasonal variations of about ± 2 % and solar zenith angle leading to overestimation by 5 % of OMI-DOAS measurements. For the Dobson measurements in particular, the difference caused by the inconsistency in observation times when compared with the Pandora measurements was up to 12.5 % on 22 June 2013 because of diurnal variations in the TCO values. However, despite these various differences and discrepancies, the daily TCO values measured by the four instruments during the 2-year study period are accurate and closely correlated.


2017 ◽  
Vol 10 (10) ◽  
pp. 3661-3676 ◽  
Author(s):  
Jiyoung Kim ◽  
Jhoon Kim ◽  
Hi-Ku Cho ◽  
Jay Herman ◽  
Sang Seo Park ◽  
...  

Abstract. Daily total column ozone (TCO) measured using the Pandora spectrophotometer (no. 19) was compared with data from the Dobson (no. 124) and Brewer (no. 148) spectrophotometers, as well as from the Ozone Monitoring Instrument (OMI) (with two different algorithms, Total Ozone Mapping Spectrometer (TOMS) TOMS and differential optical absorption spectroscopy (DOAS) methods), over the 2-year period between March 2012 and March 2014 at Yonsei University, Seoul, Korea. Based on the linear-regression method, the TCO from Pandora is closely correlated with those from other instruments with regression coefficients (slopes) of 0.95 (Dobson), 1.00 (Brewer), 0.98 (OMI-TOMS), and 0.97 (OMI-DOAS), and determination coefficients (R2) of 0.95 (Dobson), 0.97 (Brewer), 0.96 (OMI-TOMS), and 0.95 (OMI-DOAS). The daily averaged TCO from Pandora has within 3 % differences compared to TCO values from other instruments. For the Dobson measurements in particular, the difference caused by the inconsistency in observation times when compared with the Pandora measurements was up to 12.5 % because of diurnal variations in the TCO values. However, the comparison with Brewer after matching the observation time shows agreement with large R2 and small biases. The TCO ratio between Brewer and Pandora shows the 0.98 ± 0.03, and the distributions for relative differences between two instruments are 89.2 and 57.1 % of the total data within the error ranges of 3 and 5 %, respectively. The TCO ratio between Brewer and Pandora also is partially dependent on solar zenith angle. The error dependence by the observation geometry is essential to the further analysis focusing on the sensitivity of aerosol and the stray-light effect in the instruments.


2021 ◽  
Vol 14 (3) ◽  
pp. 2261-2283
Author(s):  
Xiaoyi Zhao ◽  
Vitali Fioletov ◽  
Michael Brohart ◽  
Volodya Savastiouk ◽  
Ihab Abboud ◽  
...  

Abstract. The Brewer ozone spectrophotometer (the Brewer) was designed at Environment and Climate Change Canada (ECCC) in the 1970s to make accurate automated total ozone column measurements. Since the 1980s, the Brewer instrument has become a World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) standard ozone monitoring instrument. Now, more than 230 Brewers have been produced. To assure the quality of the Brewer measurements, a calibration chain is maintained, i.e., first, the reference instruments are independently absolutely calibrated, and then the calibration is transferred from the reference instrument to the travelling standard, and subsequently from the travelling standard to field instruments. ECCC has maintained the world Brewer reference instruments since the 1980s to provide transferable calibration to field instruments at monitoring sites. Three single-monochromator (Mark II) type instruments (serial numbers 008, 014, and 015) formed this world Brewer reference triad (BrT) and started their service in Toronto, Canada, in 1984. In the 1990s, the Mark III type Brewer (known as the double Brewer) was developed, which has two monochromators to reduce the internal instrumental stray light. The double-Brewer world reference triad (BrT-D) was formed in 2013 (serial numbers 145, 187 and 191), co-located with the BrT. The first assessment of the BrT's performance was made in 2005, covering the period between 1984 and 2004 (Fioletov et al., 2005). The current work provides an updated assessment of the BrT's performance (from 1999 to 2019) and the first comprehensive assessment of the BrT-D. The random uncertainties of individual reference instruments are within the WMO/GAW requirement of 1 % (WMO, 2001): 0.49 % and 0.42 % for BrT and BrT-D, respectively, as estimated in this study. The long-term stability of the reference instruments is also evaluated in terms of uncertainties of the key instrument characteristics: the extraterrestrial calibration constant (ETC) and effective ozone absorption coefficients (both having an effect of less than 2 % on total column ozone). Measurements from a ground-based instrument (Pandora spectrometer), satellites (11 datasets, including the most recent high-resolution satellite, TROPOspheric Monitoring Instrument), and reanalysis model (the second Modern-Era Retrospective analysis for Research and Applications, MERRA-2) are used to further assess the performance of world Brewer reference instruments and to provide a context for the requirements of stratospheric ozone observations during the last two decades.


2009 ◽  
Vol 9 (4) ◽  
pp. 16233-16266
Author(s):  
G. W. K. Moore ◽  
S. Abernethy ◽  
J. L. Semple

Abstract. Ozone is an important atmospheric constituent due to its role as both a greenhouse gas and an oxidant. Recent measurements in the Mount Everest region indicate the presence of ozone at elevations from 5000 to 9000 m a.s.l. that are the result of both stratospheric and tropospheric sources. Here we examine the temporal variability in the surface ozone concentration measurements from the ABC-Pyramid Observatory in the Mount Everest region during 2006 and compare it to the total column ozone data from the OMI instrument as well as meteorological fields from the ECMWF Interim Reanalysis. Both the surface ozone at and the total column ozone over the ABC-Pyramid Observatory site have maxima in the pre-monsoon period. We show that during this period, there is a statistically significant correlation between the two suggesting that the stratosphere was an important contributor to the high levels of ozone observed during the period. There was a hiatus in the monsoon in June that resulted in a return of westerlies over northern Indian and southern Tibet and as a result, the aforementioned correlation extended into June. No such correlation exists during the monsoon and post-monsoon periods. Spatial correlation maps between the surface ozone and total column ozone as well as meteorological fields from the ECMWF Interim Reanalysis support the contention that there is a significant stratospheric contribution in the pre-monsoon period that is absent during and after the monsoon.


2010 ◽  
Vol 10 (8) ◽  
pp. 3711-3721 ◽  
Author(s):  
J. R. Ziemke ◽  
S. Chandra ◽  
L. D. Oman ◽  
P. K. Bhartia

Abstract. Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the "Ozone ENSO Index" (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1 K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a −1.7 DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4 DU and −1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.


Author(s):  
R. McPeters ◽  
M. Kroon ◽  
G. Labow ◽  
E. Brinksma ◽  
D. Balis ◽  
...  

2015 ◽  
Vol 8 (7) ◽  
pp. 7491-7510 ◽  
Author(s):  
R. D. McPeters ◽  
S. Frith ◽  
G. J. Labow

Abstract. The ozone data record from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS-Aura satellite has proven to be very stable over the ten plus years of operation. The OMI total column ozone processed through the TOMS ozone retrieval algorithm (version 8.5) has been compared with ground based measurements and with ozone from a series of SBUV/2 instruments. Comparison with an ensemble of Brewer and Dobson sites shows an absolute offset of about 1.5 % but stability over the ten years to better than half a percent. Comparison with a merged ozone (MOD) data set created by combining data from a series of SBUV/2 instruments again shows an offset, of about 1 %, and a relative trend of less than half a percent over ten years. The offset is mostly due to the use of the old Bass and Paur ozone cross sections in the OMI retrievals rather than the Brion/Daumont/Malicet cross sections that are now recommended. The bias in the Southern Hemisphere is smaller than that in the Northern Hemisphere, 1 vs. 1.5 %, for reasons that are not completely understood. When OMI was compared with the European realization of a multi-instrument ozone time series, the GTO (GOME type ozone) dataset, there was a small trend of about −0.85 % decade−1. Since all the comparisons of OMI relative to other ozone measuring systems show relative trends that are less than 1 % decade−1, we conclude that the OMI total column ozone data are sufficiently stable that they can be used in studies of ozone trends.


2015 ◽  
Vol 33 (9) ◽  
pp. 1135-1146 ◽  
Author(s):  
A. M. Toihir ◽  
H. Bencherif ◽  
V. Sivakumar ◽  
L. El Amraoui ◽  
T. Portafaix ◽  
...  

Abstract. This paper presents comparison results of the total column ozone (TCO) data product over 13 southern tropical and subtropical sites recorded from the Infrared Atmospheric Sounder Interferometer (IASI) onboard the EUMETSAT (European organization for the exploitation of METeorological SATellite) MetOp (Meteorological Operational satellite program) satellite. TCO monthly averages obtained from IASI between June 2008 and December 2012 are compared with collocated TCO measurements from the Ozone Monitoring Instrument (OMI) on the OMI/Aura satellite and the Dobson and SAOZ (Système d'Analyse par Observation Zénithale) ground-based instruments. The results show that IASI displays a positive bias with an average less than 2 % with respect to OMI and Dobson observations, but exhibits a negative bias compared to SAOZ over Bauru with a bias around 2.63 %. There is a good agreement between IASI and the other instruments, especially from 15° S southward where a correlation coefficient higher than 0.87 is found. IASI exhibits a seasonal dependence, with an upward trend in autumn and a downward trend during spring, especially before September 2010. After September 2010, the autumn seasonal bias is considerably reduced due to changes made to the retrieval algorithm of the IASI level 2 (L2) product. The L2 product released after August (L2 O3 version 5 (v5)) matches TCO from the other instruments better compared to version 4 (v4), which was released between June 2008 and August 2010. IASI bias error recorded from September 2010 is estimated to be at 1.5 % with respect to OMI and less than ±1 % with respect to the other ground-based instruments. Thus, the improvement made by O3 L2 version 5 (v5) product compared with version 4 (v4), allows IASI TCO products to be used with confidence to study the distribution and interannual variability of total ozone in the southern tropics and subtropics.


2017 ◽  
Author(s):  
Luis Millan ◽  
Gloria Manney

Abstract. An ozone mini-hole is a synoptic-scale region with strongly decreased total column ozone resulting from dynamical processes. Using total column measurements from the Ozone Monitoring Instrument and ozone profile measurements from the Microwave Limb Sounder, we evaluate the accuracy of mini-hole representation in five reanalyses. This study provides a metric of the reanalyses’ ability to capture dynamically-driven ozone variability. The reanalyses and the measurements show similar seasonal variability and geographical distributions of mini-holes; however, all of the reanalyses underestimate the number of mini-holes, their area, and in many reanalyses their location displays an eastward bias. The reanalyses’ underestimation of mini-hole number ranges from about 34 % to about 83 %. The mini-hole vertical representation in the reanalyses agrees well with that in the MLS measurements and, furthermore, is consistent with previously reported mechanisms for mini-hole formation. The skill of the reanalyses is not closely tied to the ozone fields assimilated, suggesting that the dynamics of the reanalysis models are more important than the assimilated ozone fields to reproducing ozone mini-holes.


Sign in / Sign up

Export Citation Format

Share Document