Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product

2018 ◽  
Vol 31 (11) ◽  
pp. 4501-4527 ◽  
Author(s):  
Seiji Kato ◽  
Fred G. Rose ◽  
David A. Rutan ◽  
Tyler J. Thorsen ◽  
Norman G. Loeb ◽  
...  

Abstract The algorithm to produce the Clouds and the Earth’s Radiant Energy System (CERES) Edition 4.0 (Ed4) Energy Balanced and Filled (EBAF)-surface data product is explained. The algorithm forces computed top-of-atmosphere (TOA) irradiances to match with Ed4 EBAF-TOA irradiances by adjusting surface, cloud, and atmospheric properties. Surface irradiances are subsequently adjusted using radiative kernels. The adjustment process is composed of two parts: bias correction and Lagrange multiplier. The bias in temperature and specific humidity between 200 and 500 hPa used for the irradiance computation is corrected based on observations by Atmospheric Infrared Sounder (AIRS). Similarly, the bias in the cloud fraction is corrected based on observations by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat. Remaining errors in surface, cloud, and atmospheric properties are corrected in the Lagrange multiplier process. Ed4 global annual mean (January 2005 through December 2014) surface net shortwave (SW) and longwave (LW) irradiances increase by 1.3 W m−2 and decrease by 0.2 W m−2, respectively, compared to EBAF Edition 2.8 (Ed2.8) counterparts (the previous version), resulting in an increase in net SW + LW surface irradiance of 1.1 W m−2. The uncertainty in surface irradiances over ocean, land, and polar regions at various spatial scales are estimated. The uncertainties in all-sky global annual mean upward and downward shortwave irradiance are 3 and 4 W m−2, respectively, and the uncertainties in upward and downward longwave irradiance are 3 and 6 W m−2, respectively. With an assumption of all errors being independent, the uncertainty in the global annual mean surface LW + SW net irradiance is 8 W m−2.

2018 ◽  
Vol 31 (2) ◽  
pp. 895-918 ◽  
Author(s):  
Norman G. Loeb ◽  
David R. Doelling ◽  
Hailan Wang ◽  
Wenying Su ◽  
Cathy Nguyen ◽  
...  

The Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA), Edition 4.0 (Ed4.0), data product is described. EBAF Ed4.0 is an update to EBAF Ed2.8, incorporating all of the Ed4.0 suite of CERES data product algorithm improvements and consistent input datasets throughout the record. A one-time adjustment to shortwave (SW) and longwave (LW) TOA fluxes is made to ensure that global mean net TOA flux for July 2005–June 2015 is consistent with the in situ value of 0.71 W m−2. While global mean all-sky TOA flux differences between Ed4.0 and Ed2.8 are within 0.5 W m−2, appreciable SW regional differences occur over marine stratocumulus and snow/sea ice regions. Marked regional differences in SW clear-sky TOA flux occur in polar regions and dust areas over ocean. Clear-sky LW TOA fluxes in EBAF Ed4.0 exceed Ed2.8 in regions of persistent high cloud cover. Owing to substantial differences in global mean clear-sky TOA fluxes, the net cloud radiative effect in EBAF Ed4.0 is −18 W m−2 compared to −21 W m−2 in EBAF Ed2.8. The overall uncertainty in 1° × 1° latitude–longitude regional monthly all-sky TOA flux is estimated to be 3 W m−2 [one standard deviation (1 σ)] for the Terra-only period and 2.5 W m−2 for the Terra– Aqua period both for SW and LW fluxes. The SW clear-sky regional monthly flux uncertainty is estimated to be 6 W m−2 for the Terra-only period and 5 W m−2 for the Terra– Aqua period. The LW clear-sky regional monthly flux uncertainty is 5 W m−2 for Terra only and 4.5 W m−2 for Terra– Aqua.


2012 ◽  
Vol 29 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Xianglei Huang ◽  
Norman G. Loeb ◽  
Huiwen Chuang

Abstract Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 μm) measurement and a shortwave (SW) channel (0.3–5 μm) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about −0.11% yr−1 in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately −0.323 W m−2 yr−1. This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements.


2019 ◽  
Vol 12 (8) ◽  
pp. 4361-4377 ◽  
Author(s):  
Alexandre Guillaume ◽  
Brian H. Kahn ◽  
Eric J. Fetzer ◽  
Qing Yue ◽  
Gerald J. Manipon ◽  
...  

Abstract. A method is described to classify cloud mixtures of cloud top types, termed cloud scenes, using cloud type classification derived from the CloudSat radar (2B-CLDCLASS). The scale dependence of the cloud scenes is quantified. For spatial scales at 45 km (15 km), only 18 (10) out of 256 possible cloud scenes account for 90 % of all observations and contain one, two, or three cloud types. The number of possible cloud scenes is shown to depend on spatial scale with a maximum number of 210 out of 256 possible scenes at a scale of 105 km and fewer cloud scenes at smaller and larger scales. The cloud scenes are used to assess the characteristics of spatially collocated Atmospheric Infrared Sounder (AIRS) thermodynamic-phase and ice cloud property retrievals within scenes of varying cloud type complexity. The likelihood of ice and liquid-phase detection strongly depends on the CloudSat-identified cloud scene type collocated with the AIRS footprint. Cloud scenes primarily consisting of cirrus, nimbostratus, altostratus, and deep convection are dominated by ice-phase detection, while stratocumulus, cumulus, and altocumulus are dominated by liquid- and undetermined-phase detection. Ice cloud particle size and optical thickness are largest for cloud scenes containing deep convection and cumulus and are smallest for cirrus. Cloud scenes with multiple cloud types have small reductions in information content and slightly higher residuals of observed and modeled radiance compared to cloud scenes with single cloud types. These results will help advance the development of temperature, specific humidity, and cloud property retrievals from hyperspectral infrared sounders that include cloud microphysics in forward radiative transfer models.


2008 ◽  
Vol 21 (17) ◽  
pp. 4223-4241 ◽  
Author(s):  
Seiji Kato ◽  
Fred G. Rose ◽  
David A. Rutan ◽  
Thomas P. Charlock

Abstract The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low-level clouds, which tend to be stationary, it is postulated here that the meridional and vertical gradients of the cloud effect increase the rate of meridional energy transport by the dynamics of the atmosphere from the midlatitudes to the polar region, especially in fall and winter. Clouds then warm the surface in the polar regions except in the Arctic in summer. Clouds, therefore, contribute toward increasing the rate of meridional energy transport from the midlatitudes to the polar regions through the atmosphere.


2007 ◽  
Vol 24 (4) ◽  
pp. 564-584 ◽  
Author(s):  
Norman G. Loeb ◽  
Seiji Kato ◽  
Konstantin Loukachine ◽  
Natividad Manalo-Smith ◽  
David R. Doelling

Abstract Errors in top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) instrument due to uncertainties in radiance-to-flux conversion from CERES Terra angular distribution models (ADMs) are evaluated through a series of consistency tests. These tests show that the overall bias in regional monthly mean shortwave (SW) TOA flux is less than 0.2 W m−2 and the regional RMS error ranges from 0.70 to 1.4 W m−2. In contrast, SW TOA fluxes inferred using theoretical ADMs that assume clouds are plane parallel are overestimated by 3–4 W m−2 and exhibit a strong latitudinal dependence. In the longwave (LW), the bias error ranges from 0.2 to 0.4 W m−2 and regional RMS errors remain smaller than 0.7 W m−2. Global mean albedos derived from ADMs developed during the Earth Radiation Budget Experiment (ERBE) and applied to CERES measurements show a systematic increase with viewing zenith angle of 4%–8%, while albedos from the CERES Terra ADMs show a smaller increase of 1%–2%. The LW fluxes from the ERBE ADMs show a systematic decrease with viewing zenith angle of 2%–2.4%, whereas fluxes from the CERES Terra ADMs remain within 0.7%–0.8% at all angles. Based on several months of multiangle CERES along-track data, the SW TOA flux consistency between nadir- and oblique-viewing zenith angles is generally 5% (<17 W m−2) over land and ocean and 9% (26 W m−2) in polar regions, and LW TOA flux consistency is approximate 3% (7 W m−2) over all surfaces. Based on these results and a theoretically derived conversion between TOA flux consistency and TOA flux error, the best estimate of the error in CERES TOA flux due to the radiance-to-flux conversion is 3% (10 W m−2) in the SW and 1.8% (3–5 W m−2) in the LW. Monthly mean TOA fluxes based on ERBE ADMs are larger than monthly mean TOA fluxes based on CERES Terra ADMs by 1.8 and 1.3 W m−2 in the SW and LW, respectively.


2016 ◽  
Vol 9 (12) ◽  
pp. 6013-6023 ◽  
Author(s):  
Xiuhong Chen ◽  
Xianglei Huang

Abstract. Previous studies have shown that longwave (LW) spectral fluxes have unique merit in climate studies. Using Atmospheric Infrared Sounder (AIRS) radiances as a case study, this study presents an algorithm to derive the entire LW clear-sky spectral fluxes from spaceborne hyperspectral observations. No other auxiliary observations are needed in the algorithm. A clear-sky scene is identified using a three-step detection method. The identified clear-sky scenes are then categorized into different sub-scene types using information about precipitable water, lapse rate and surface temperature inferred from the AIRS radiances at six selected channels. A previously established algorithm is then used to invert AIRS radiances to spectral fluxes over the entire LW spectrum at 10 cm−1 spectral interval. Accuracy of the algorithms is evaluated against collocated Clouds and the Earth's Radiant Energy System (CERES) observations. For nadir-view observations, the mean difference between outgoing longwave radiation (OLR) derived by this algorithm and the collocated CERES OLR is 1.52 Wm−2 with a standard deviation of 2.46 Wm−2. When the algorithm is extended for viewing zenith angle up to 45°, the performance is comparable to that for nadir-view results.


2018 ◽  
Author(s):  
Alexandre Guillaume ◽  
Brian H. Kahn ◽  
Eric J. Fetzer ◽  
Qing Yue ◽  
Gerald J. Manipon ◽  
...  

Abstract. A method is described to classify cloud mixtures of cloud top types, termed cloud scenes, using cloud type classification derived from the CloudSat radar (2B-CLDCLASS). The scale dependence of those cloud scenes is studied. For spatial scales near 45 km, only 16 out of 256 possible cloud scenes account for 90 % of all observations and contain either one, two, or three cloud types. The number of possible cloud scenes is shown to depend on spatial scale with a maximum number of 194 out of 256 possible scenes at a scale of 105 km and fewer cloud scenes at smaller and larger scales. The cloud scenes are used to assess the characteristics of spatially collocated Atmospheric Infrared Sounder (AIRS) thermodynamic phase and ice cloud property retrievals within scenes of varying cloud type complexity. The likelihood of ice and liquid phase detection strongly depends on the CloudSat-identified cloud scene type collocated with the AIRS footprint. Cloud scenes primarily consisting of cirrus, nimbostratus, altostratus and deep convection are dominated by ice phase detection, while stratocumulus, cumulus, and altocumulus are dominated by liquid and undetermined phase detection. Ice cloud particle size and optical thickness are largest for cloud scenes containing deep convection and cumulus, and are smallest for cirrus. Cloud scenes with multiple cloud types have small reductions in information content and slightly higher residuals of observed and modelled radiance compared to cloud scenes with single cloud types. These results will help advance the development of temperature, specific humidity, and cloud property retrievals from hyperspectral infrared sounders that include cloud microphysics in forward radiative transfer models.


2016 ◽  
Author(s):  
Xiuhong Chen ◽  
Xianglei Huang

Abstract. Previous studies have shown that longwave (LW) spectral fluxes have unique merit in climate studies. Using Atmospheric Infrared Sounder (AIRS) radiances as a case study, this study presents an algorithm to derive the entire LW clear-sky spectral fluxes solely from hyperspectral observations. No other auxiliary observations are needed in the algorithm. A clear-sky scene is identified using a three-step detection method. The identified clear-sky scenes are then categorized into different sub-scene types using AIRS radiances at six selected channels. A previously established algorithm is then used to invert AIRS radiances to spectral fluxes over the entire LW spectrum at 10 cm−1 spectral interval. Accuracy of the algorithms is evaluated against collocated Clouds and the Earth's Radiant Energy System (CERES) observations. For nadir-view observations, the mean difference between outgoing longwave radiation (OLR) derived by this algorithm and the collocated CERES OLR is 1.52 Wm−2 with a standard deviation of 2.46 Wm−2. When the algorithm is extended for viewing zenith angle up to 45°, the performance is comparable to that for nadir-view results.


Sign in / Sign up

Export Citation Format

Share Document