The Role of the Water Vapor Feedback in the ITCZ Response to Hemispherically Asymmetric Forcings

2018 ◽  
Vol 31 (9) ◽  
pp. 3659-3678 ◽  
Author(s):  
Spencer K. Clark ◽  
Yi Ming ◽  
Isaac M. Held ◽  
Peter J. Phillipps

In comprehensive and idealized general circulation models, hemispherically asymmetric forcings lead to shifts in the latitude of the intertropical convergence zone (ITCZ). Prior studies using comprehensive GCMs (with complicated parameterizations of radiation, clouds, and convection) suggest that the water vapor feedback tends to amplify the movement of the ITCZ in response to a given hemispherically asymmetric forcing, but this effect has yet to be elucidated in isolation. This study uses an idealized moist model, coupled to a full radiative transfer code, but without clouds, to examine the role of the water vapor feedback in a targeted manner. In experiments with interactive water vapor and radiation, the ITCZ latitude shifts roughly twice as much off the equator as in cases with the water vapor field seen by the radiation code prescribed to a static hemisperically symmetric control distribution. Using energy flux equator theory for the latitude of the ITCZ, the amplification of the ITCZ shift is attributed primarily to the longwave water vapor absorption associated with the movement of the ITCZ into the warmer hemisphere, further increasing the net column heating asymmetry. Local amplification of the imposed forcing by the shortwave water vapor feedback plays a secondary role. Experiments varying the convective relaxation time, an important parameter in the convection scheme used in the idealized moist model, yield qualitatively similar results, suggesting some degree of robustness to the model physics; however, the sensitivity experiments do not preclude that more extreme modifications to the convection scheme could lead to qualitatively different behavior.

ZooKeys ◽  
2018 ◽  
Vol 801 ◽  
pp. 459-479 ◽  
Author(s):  
John-David Nako ◽  
Nicole S. Lee ◽  
Jonathan C. Wright

Arthropods require periodic molting in order to grow which presents a number of challenges to terrestrial taxa. Following ecdysis, the pliant new cuticle is susceptible to buckling under gravity and requires elevated hydrostatic pressure for support. Terrestrial species also require a mechanism of volume expansion and stretching of the integument prior to sclerotization, a need that is readily met in aquatic arthropods by drinking. Options for land arthropods include drinking of dew, swallowing of air, or using muscular contractions to inflate air sacs in tracheate taxa. In this study we tested the hypothesis that crinochete terrestrial isopods (Isopoda: Oniscidea: Crinocheta) exploit their capacity for active water vapor absorption (WVA) to increase volume during molting. Two crinochete species,ArmadillidiumvulgareandPorcelliodilatatus, were studied and compared with the non-absorbing speciesLigidiumlapetum(Oniscidea: Ligiamorpha). Pre-molting animals were identified by sternal CaCO3deposits and exposed to 100% or 97% relative humidity (RH). Mass-changes were monitored by daily weighing and the timing of the posterior and anterior ecdyses was used to categorize time (days premolt and days post-molt) over the molt cycle. In each treatment RH,A.vulgareandP.dilatatusshowed a progressive mass increase from 5 days premolt until the posterior or anterior ecdysis, followed abruptly by period of mass-loss lasting 3–4 days post-molt. The fact that the initial mass-gain is seen in 97 % RH, a humidity below the water activity of the hemolymph, confirms the role of WVA. Similarly, since the post-molt mass-loss is seen in 100 % RH, this must be due to active expulsion of water, possibly via maxillary urine. Concurrent changes in hemolymph osmolality were monitored in a separate batch ofA.vulgareand show sustained osmolality during premolt and an abrupt decrease between the anterior and posterior ecdysis. These patterns indicate a mobilization of sequestered electrolytes during premolt, and a loss of electrolytes during the post-molt mass-loss, amounting to approximately 8.6 % of total hemolymph solutes. WVA, in conjunction with pulses of elevated hemolymph pressure, provides an efficient mechanism of pre-molt volume expansion prior to and during the biphasic molt in these species. PremoltLigidiumlapetumexposed to same treatments failed to molt successfully and no premolt animals survived to day 3 (72 h) even in 100 % RH. The apparent dependence of this species on liquid water for successful molting could explain its obligatory association with riparian fringe habitats.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4468
Author(s):  
Yalalt Nyamgerel ◽  
Yeongcheol Han ◽  
Minji Kim ◽  
Dongchan Koh ◽  
Jeonghoon Lee

The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.


2005 ◽  
Vol 44 (10) ◽  
pp. 1511-1525 ◽  
Author(s):  
R. Meneghini ◽  
L. Liao ◽  
L. Tian

Abstract The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that depend primarily on the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.


Sign in / Sign up

Export Citation Format

Share Document