scholarly journals Two AMOC States in Response to Decreasing Greenhouse Gas Concentrations in the Coupled Climate Model MPI-ESM

2018 ◽  
Vol 31 (19) ◽  
pp. 7969-7984 ◽  
Author(s):  
Marlene Klockmann ◽  
Uwe Mikolajewicz ◽  
Jochem Marotzke

This study analyzes the response of the Atlantic meridional overturning circulation (AMOC) to different CO2 concentrations and two ice sheet configurations in simulations with the coupled climate model MPI-ESM. With preindustrial (PI) ice sheets, there are two different AMOC states within the studied CO2 range: one state with a strong and deep upper overturning cell at high CO2 concentrations and one state with a weak and shallow upper cell at low CO2 concentrations. Changes in AMOC variability with decreasing CO2 indicate two stability thresholds. The strong state is stable above the first threshold near 217 ppm, and the weak state is stable below the second threshold near 190 ppm. Between the two thresholds, both states are marginally unstable, and the AMOC oscillates between them on millennial time scales. The weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep Water (NADW) in the deep North Atlantic and when the density gain over the North Atlantic becomes too weak to sustain continuous NADW formation. With Last Glacial Maximum (LGM) ice sheets, the density gain over the North Atlantic and the northward salt transport are enhanced with respect to the PI ice sheet case. This enables active NADW formation and a strong AMOC for the entire range of studied CO2 concentrations. The AMOC variability indicates that the simulated AMOC is far away from a stability threshold with LGM ice sheets. The nonlinear relationship among AMOC, CO2, and prescribed ice sheets provides an explanation for the large intermodel spread of AMOC states found in previous coupled LGM simulations.

2021 ◽  
Author(s):  
Marion Devilliers ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

Abstract Greenland ice sheet experienced an intensive melting in the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean could disrupt the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic Meridional Overturning Circulation (AMOC) have been reported. In order to better understand the possible impact of the increasing melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes spanning from 1840 to 2014. The estimate is based on runoff fluxes coming from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force a set of historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The ten-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is weakened by 0.32±0.35 Sv at 26°N. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is slightly closer to observations than in standard historical simulations, although the two trends are only different at the 90% confidence level. Slight improvement of the Root Mean Square Error with respect to observations in the subpolar gyre region suggests that part of the surface temperature variability over the recent decades may have been forced by the release of freshwater from Greenland and surrounding regions since the 1920s. Finally, we highlight that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very small amount of the 3±1 Sv weakening suggested in a recent study.


2020 ◽  
Author(s):  
Didier Swingedouw ◽  
Marion Devilliers ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

<p>Greenland experienced intensive melting over the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean is influencing the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic meridional overturning circulation (AMOC) have been reported. In order to better understand the possible impact of the melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes from 1840 to 2014 associated to the runoff fluxes from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The 10-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is reduced by 0.32±0.35 Sv at 26°N. This highlights that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very moderate amount of the 3±1 Sv weakening suggested in a recent study. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is more in line with observations than in standard historical simulations. We also show a clear improvement of the representation of the 1995 abrupt warming in the subpolar gyre in the melting ensemble, which may thus be partly forced by Greenland ice sheet melting. Mechanisms at play imply changes in the variability of the AMOC in the melting ensemble as compared to the historical one. Such an impact on forced decadal variability has crucial consequences for decadal prediction systems that may gain skill by including observed Greenland ice sheet melting.</p>


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

<p>While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.</p><p>Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.</p><p> </p><p>References</p><p>Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228–232.</p><p>Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.</p><p>Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.</p><p>Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., Müller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.</p><p>Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.</p><p>Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.</p>


2021 ◽  
Author(s):  
Brian Crow ◽  
Matthias Prange ◽  
Michael Schulz

<p>Historical estimates of the melt rate and extent of the Greenland ice sheet (GrIS) are poorly constrained, due both to incomplete understanding of relevant ice dynamics and the magnitude of forcing acting upon the ice sheet (e.g., Alley et al. 2010). Previous assessments of the Marine Isotope Stage 11 (MIS-11) interglacial period have determined it was likely one of the warmest and longest interglacial periods of the past 800 kyr, leading to melt of at least half the present-day volume of the Greenland ice sheet (Robinson et al. 2017). An enhanced Atlantic meridional overturning circulation (AMOC) is commonly cited as sustaining the anomalous warmth across the North Atlantic and Greenland (e.g., Rachmayani et al. 2017), but little is known about potential atmospheric contributions. Paleorecords from this period are sparse, and detailed climate modelling studies of this period have been heretofore very limited. The climatic conditions over Greenland and the North Atlantic region, and how they may have contributed to the melt of the GrIS during MIS-11, are therefore not well understood. By utilizing climate simulations with the Community Earth System Model (CESM), our study indicates that changes in atmospheric eddy behavior, including eddy fluxes of heat and precipitation, made significant contributions to the negative mass balance conditions over the GrIS during the MIS-11 interglacial. Thus, accounting for the effects of atmospheric feedbacks in a warmer-than-present climate is a necessary component for future analyses attempting to better constrain the extent and rate of melt of the GrIS.</p>


2005 ◽  
Vol 18 (13) ◽  
pp. 2361-2375 ◽  
Author(s):  
Juliette Mignot ◽  
Claude Frankignoul

Abstract The link between the interannual to interdecadal variability of the Atlantic meridional overturning circulation (AMOC) and the atmospheric forcing is investigated using 200 yr of a control simulation of the Bergen Climate Model, where the mean circulation cell is rather realistic, as is also the location of deep convection in the northern North Atlantic. The AMOC variability has a slightly red frequency spectrum and is primarily forced by the atmosphere. The maximum value of the AMOC is mostly sensitive to the deep convection in the Irminger Sea, which it lags by about 5 yr. The latter is mostly forced by a succession of atmospheric patterns that induce anomalous northerly winds over the area. The impact of the North Atlantic Oscillation on deep convection in the Labrador and Greenland Seas is represented realistically, but its influence on the AMOC is limited to the interannual time scale and is primarily associated with wind forcing. The tropical Pacific shows a strong variability in the model, with too strong an influence on the North Atlantic. However, its influence on the tropical Atlantic is realistic. Based on lagged correlations and the release of fictitious Lagrangian drifters, the tropical Pacific seems to influence the AMOC with a time lag of about 40 yr. The mechanism is as follows: El Niño events induce positive sea surface salinity anomalies in the tropical Atlantic that are advected northward, circulate in the subtropical gyre, and then subduct. In the ocean interior, part of the salinity anomaly is advected along the North Atlantic current, eventually reaching the Irminger and Labrador Seas after about 35 yr where they destabilize the water column and favor deep convection.


Sign in / Sign up

Export Citation Format

Share Document