scholarly journals Impact of a realistic Greenland ice sheet melting on the North Atlantic over the period 1920-2014

Author(s):  
Didier Swingedouw ◽  
Marion Devilliers ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

<p>Greenland experienced intensive melting over the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean is influencing the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic meridional overturning circulation (AMOC) have been reported. In order to better understand the possible impact of the melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes from 1840 to 2014 associated to the runoff fluxes from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The 10-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is reduced by 0.32±0.35 Sv at 26°N. This highlights that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very moderate amount of the 3±1 Sv weakening suggested in a recent study. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is more in line with observations than in standard historical simulations. We also show a clear improvement of the representation of the 1995 abrupt warming in the subpolar gyre in the melting ensemble, which may thus be partly forced by Greenland ice sheet melting. Mechanisms at play imply changes in the variability of the AMOC in the melting ensemble as compared to the historical one. Such an impact on forced decadal variability has crucial consequences for decadal prediction systems that may gain skill by including observed Greenland ice sheet melting.</p>

2021 ◽  
Author(s):  
Marion Devilliers ◽  
Didier Swingedouw ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

Abstract Greenland ice sheet experienced an intensive melting in the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean could disrupt the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic Meridional Overturning Circulation (AMOC) have been reported. In order to better understand the possible impact of the increasing melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes spanning from 1840 to 2014. The estimate is based on runoff fluxes coming from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force a set of historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The ten-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is weakened by 0.32±0.35 Sv at 26°N. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is slightly closer to observations than in standard historical simulations, although the two trends are only different at the 90% confidence level. Slight improvement of the Root Mean Square Error with respect to observations in the subpolar gyre region suggests that part of the surface temperature variability over the recent decades may have been forced by the release of freshwater from Greenland and surrounding regions since the 1920s. Finally, we highlight that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very small amount of the 3±1 Sv weakening suggested in a recent study.


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2021 ◽  
Author(s):  
Brian Crow ◽  
Matthias Prange ◽  
Michael Schulz

<p>Historical estimates of the melt rate and extent of the Greenland ice sheet (GrIS) are poorly constrained, due both to incomplete understanding of relevant ice dynamics and the magnitude of forcing acting upon the ice sheet (e.g., Alley et al. 2010). Previous assessments of the Marine Isotope Stage 11 (MIS-11) interglacial period have determined it was likely one of the warmest and longest interglacial periods of the past 800 kyr, leading to melt of at least half the present-day volume of the Greenland ice sheet (Robinson et al. 2017). An enhanced Atlantic meridional overturning circulation (AMOC) is commonly cited as sustaining the anomalous warmth across the North Atlantic and Greenland (e.g., Rachmayani et al. 2017), but little is known about potential atmospheric contributions. Paleorecords from this period are sparse, and detailed climate modelling studies of this period have been heretofore very limited. The climatic conditions over Greenland and the North Atlantic region, and how they may have contributed to the melt of the GrIS during MIS-11, are therefore not well understood. By utilizing climate simulations with the Community Earth System Model (CESM), our study indicates that changes in atmospheric eddy behavior, including eddy fluxes of heat and precipitation, made significant contributions to the negative mass balance conditions over the GrIS during the MIS-11 interglacial. Thus, accounting for the effects of atmospheric feedbacks in a warmer-than-present climate is a necessary component for future analyses attempting to better constrain the extent and rate of melt of the GrIS.</p>


2012 ◽  
Vol 25 (7) ◽  
pp. 2421-2439 ◽  
Author(s):  
Helene R. Langehaug ◽  
Iselin Medhaug ◽  
Tor Eldevik ◽  
Odd Helge Otterå

Abstract In the present study the decadal variability in the strength and shape of the subpolar gyre (SPG) in a 600-yr preindustrial simulation using the Bergen Climate Model is investigated. The atmospheric influence on the SPG strength is reflected in the variability of Labrador Sea Water (LSW), which is largely controlled by the North Atlantic Oscillation, the first mode of the North Atlantic atmospheric variability. A combination of the amount of LSW, the overflows from the Nordic seas, and the second mode of atmospheric variability, the East Atlantic Pattern, explains 44% of the modeled decadal variability in the SPG strength. A prior increase in these components leads to an intensified SPG in the western subpolar region. Typically, an increase of one standard deviation (std dev) of the total overflow (1 std dev = 0.2 Sv; 1 Sv ≡ 106 m3 s−1) corresponds to an intensification of about one-half std dev of the SPG strength (1 std dev = 2 Sv). A similar response is found for an increase of one std dev in the amount of LSW, and simultaneously the strength of the North Atlantic Current increases by one-half std dev (1 std dev = 0.9 Sv).


2014 ◽  
Vol 8 (5) ◽  
pp. 1871-1883 ◽  
Author(s):  
B. Noël ◽  
X. Fettweis ◽  
W. J. van de Berg ◽  
M. R. van den Broeke ◽  
M. Erpicum

Abstract. During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.


2015 ◽  
Vol 28 (19) ◽  
pp. 7659-7677 ◽  
Author(s):  
Claude Frankignoul ◽  
Guillaume Gastineau ◽  
Young-Oh Kwon

Abstract Maximum covariance analysis of a preindustrial control simulation of the NCAR Community Climate System Model, version 4 (CCSM4), shows that a barotropic signal in winter broadly resembling a negative phase of the North Atlantic Oscillation (NAO) follows an intensification of the Atlantic meridional overturning circulation (AMOC) by about 7 yr. The delay is due to the cyclonic propagation along the North Atlantic Current (NAC) and the subpolar gyre of a SST warming linked to a northward shift and intensification of the NAC, together with an increasing SST cooling linked to increasing southward advection of subpolar water along the western boundary and a southward shift of the Gulf Stream (GS). These changes result in a meridional SST dipole, which follows the AMOC intensification after 6 or 7 yr. The SST changes were initiated by the strengthening of the western subpolar gyre and by bottom torque at the crossover of the deep branches of the AMOC with the NAC on the western flank of the Mid-Atlantic Ridge and the GS near the Tail of the Grand Banks, respectively. The heat flux damping of the SST dipole shifts the region of maximum atmospheric transient eddy growth southward, leading to a negative NAO-like response. No significant atmospheric response is found to the Atlantic multidecadal oscillation (AMO), which is broadly realistic but shifted south and associated with a much weaker meridional SST gradient than the AMOC fingerprint. Nonetheless, the wintertime atmospheric response to the AMOC shows some similarity with the observed response to the AMO, suggesting that the ocean–atmosphere interactions are broadly realistic in CCSM4.


2012 ◽  
Vol 25 (24) ◽  
pp. 8373-8379 ◽  
Author(s):  
Sybren Drijfhout ◽  
Geert Jan van Oldenborgh ◽  
Andrea Cimatoribus

Abstract The pattern of global mean temperature (GMT) change is calculated by regressing local surface air temperature (SAT) to GMT for an ensemble of CMIP5 models and for observations over the last 132 years. Calculations are based on the historical period and climate change scenarios. As in the observations the warming pattern contains a warming hole over the subpolar North Atlantic. Using a bivariate regression of SAT to GMT and an index of the Atlantic meridional overturning circulation (AMOC), the warming pattern is decomposed in a radiatively forced part and an AMOC fingerprint. The North Atlantic warming hole is associated with a decline of the AMOC. The AMOC fingerprint resembles Atlantic multidecadal variability (AMV), but details of the pattern change when the AMOC decline increases, underscoring the nonlinearity in the response. The warming hole is situated south of deep convection sites, indicating that it involves an adjustment of the gyre circulation, although it should be noted that some models feature deep convection in the middle of the subpolar gyre. The warming hole is already prominent in historical runs, where the response of the AMOC to GMT is weak, which suggests that it is involved in an ocean adjustment that precedes the AMOC decline. In the more strongly forced scenario runs, the warming hole over the subpolar gyre becomes weaker, while cooling over the Nordic seas increases, consistent with previous findings that deep convection in the Labrador and Irminger Seas is more vulnerable to changes in external forcing than convection in the Nordic seas, which only reacts after a threshold is passed.


2018 ◽  
Vol 31 (19) ◽  
pp. 7969-7984 ◽  
Author(s):  
Marlene Klockmann ◽  
Uwe Mikolajewicz ◽  
Jochem Marotzke

This study analyzes the response of the Atlantic meridional overturning circulation (AMOC) to different CO2 concentrations and two ice sheet configurations in simulations with the coupled climate model MPI-ESM. With preindustrial (PI) ice sheets, there are two different AMOC states within the studied CO2 range: one state with a strong and deep upper overturning cell at high CO2 concentrations and one state with a weak and shallow upper cell at low CO2 concentrations. Changes in AMOC variability with decreasing CO2 indicate two stability thresholds. The strong state is stable above the first threshold near 217 ppm, and the weak state is stable below the second threshold near 190 ppm. Between the two thresholds, both states are marginally unstable, and the AMOC oscillates between them on millennial time scales. The weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep Water (NADW) in the deep North Atlantic and when the density gain over the North Atlantic becomes too weak to sustain continuous NADW formation. With Last Glacial Maximum (LGM) ice sheets, the density gain over the North Atlantic and the northward salt transport are enhanced with respect to the PI ice sheet case. This enables active NADW formation and a strong AMOC for the entire range of studied CO2 concentrations. The AMOC variability indicates that the simulated AMOC is far away from a stability threshold with LGM ice sheets. The nonlinear relationship among AMOC, CO2, and prescribed ice sheets provides an explanation for the large intermodel spread of AMOC states found in previous coupled LGM simulations.


2021 ◽  
pp. 1-56
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

AbstractThere is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic and meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic sector variability. This mode accounting for 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre leads to lower surface salinity and density in the sinking region, which reduces deep convection and eventually AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.


Sign in / Sign up

Export Citation Format

Share Document