scholarly journals South Pacific Decadal Climate Variability and Potential Predictability

2019 ◽  
Vol 32 (18) ◽  
pp. 6051-6069 ◽  
Author(s):  
Jiale Lou ◽  
Neil J. Holbrook ◽  
Terence J. O’Kane

Abstract The South Pacific decadal oscillation (SPDO) characterizes the Southern Hemisphere contribution to the Pacific-wide interdecadal Pacific oscillation (IPO) and is analogous to the Pacific decadal oscillation (PDO) centered in the North Pacific. In this study, upper ocean variability and potential predictability of the SPDO is examined in HadISST data and an atmosphere-forced ocean general circulation model. The potential predictability of the IPO-related variability is investigated in terms of both the fractional contribution made by the decadal component in the South, tropical and North Pacific Oceans and in terms of a doubly integrated first-order autoregressive (AR1) model. Despite explaining a smaller fraction of the total variance, we find larger potential predictability of the SPDO relative to the PDO. We identify distinct local drivers in the western subtropical South Pacific, where nonlinear baroclinic Rossby wave–topographic interactions act to low-pass filter decadal variability. In particular, we show that the Kermadec Ridge in the southwest Pacific enhances the decadal signature more prominently than anywhere else in the Pacific basin. Applying the doubly integrated AR1 model, we demonstrate that variability associated with the Pacific–South American pattern is a critically important atmospheric driver of the SPDO via a reddening process analogous to the relationship between the Aleutian low and PDO in the North Pacific—albeit that the relationship in the South Pacific appears to be even stronger. Our results point to the largely unrecognized importance of South Pacific processes as a key source of decadal variability and predictability.

2013 ◽  
Vol 26 (24) ◽  
pp. 9791-9796 ◽  
Author(s):  
Yuko M. Okumura

Abstract Based on the analysis of multicentury–millennium integrations of an atmospheric model coupled to the ocean with varying degrees, it is argued that ENSO-like decadal variability is primarily driven by stochastic atmospheric forcing. In particular, the leading mode of internal atmospheric variability over the South Pacific, which projects onto the Pacific–South American (PSA) pattern, plays an important role in modulating the trade winds and sea surface temperature (SST) in the southeast tropical Pacific. Subsequent ocean–atmosphere interactions organize a basinwide SST anomaly pattern in the tropics, which in turn forces atmospheric Rossby waves into the extratropics, reinforcing the PSA pattern and inducing coherent decadal changes in the North Pacific. In the absence of ocean dynamics, equatorial SST variability is reduced and the North Pacific exhibits decadal variability independent of the tropical–South Pacific. The strong tropical–South Pacific linkage may be attributed to the equatorially asymmetric nature of tropical Pacific climate.


2013 ◽  
Vol 26 (4) ◽  
pp. 1445-1456 ◽  
Author(s):  
Wilbert Weijer ◽  
Ernesto Muñoz ◽  
Niklas Schneider ◽  
François Primeau

Abstract A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, a series of statistical analyses are performed on a 500-yr control integration of the Community Climate System Model, version 3 (CCSM3). In particular, a principal oscillation pattern (POP) analysis is performed to identify modal behavior in the subsurface pressure field. It is found that the dominant energy of sea surface temperature (SST) variability at 25 yr (the model equivalent of the Pacific decadal oscillation) cannot be explained by the resonant excitation of an oceanic basin mode. However, significant energy in the subsurface pressure field at time scales of 17 and 10 yr appears to be related to internal ocean oscillations. However, these oscillations lack the characteristics of the classical basin modes, and must either be deformed beyond recognition by the background circulation and inhomogeneous stratification or have another dynamical origin altogether. The 17-yr oscillation projects onto the Pacific decadal oscillation and, if present in the real ocean, has the potential to enhance the predictability of low-frequency climate variability in the North Pacific.


2013 ◽  
Vol 10 (7) ◽  
pp. 12155-12216 ◽  
Author(s):  
M. Ishii ◽  
R. A. Feely ◽  
K. B. Rodgers ◽  
G.-H. Park ◽  
R. Wanninkhof ◽  
...  

Abstract. Air-sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extra-tropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial inter-annual variability. In this work, we have synthesized estimates of the net air-sea CO2 flux from a variety of products drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extra-tropics (18° N–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extra-tropics (44.5° S–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, inter-annual variations and mean seasonal variations of the regionally-integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean interior CO2 inversions are –0.47 ± 0.13 Pg C yr–1 in the North Pacific extra-tropics, +0.44 ± 0.14 Pg C yr–1 in the tropical Pacific, and –0.37 ± 0.08 Pg C yr–1 in the South Pacific extra-tropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extra-tropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., –0.49 ± 0.02 Pg C yr–1 in the North Pacific extra-tropics, +0.41 ± 0.05 Pg C yr–1 in the tropical Pacific, and –0.39 ± 0.11 Pg C yr–1 in the South Pacific extra-tropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extra-tropics, where CO2 variations in the surface and ocean interior are severely under-sampled, the difference in the air-sea CO2 flux estimates between the diagnostic models and ocean interior CO2 inversions is larger (0.18 Pg C yr–1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr–1). Regarding inter-annual variability of air-sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr–1) than in the diagnostic models (0.27 ± 0.07 Pg C yr–1).


2014 ◽  
Vol 11 (3) ◽  
pp. 709-734 ◽  
Author(s):  
M. Ishii ◽  
R. A. Feely ◽  
K. B. Rodgers ◽  
G.-H. Park ◽  
R. Wanninkhof ◽  
...  

Abstract. Air–sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air–sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extratropics (18–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extratropics (44.5–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean-interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, interannual variations and mean seasonal variations of the regionally integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean-interior CO2 inversions are −0.47 ± 0.13 Pg C yr−1 in the North Pacific extratropics, +0.44 ± 0.14 Pg C yr−1 in the tropical Pacific, and −0.37 ± 0.08 Pg C yr−1 in the South Pacific extratropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extratropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., −0.49 ± 0.02 Pg C yr−1 in the North Pacific extratropics, +0.41 ± 0.05 Pg C yr−1 in the tropical Pacific, and −0.39 ± 0.11 Pg C yr−1 in the South Pacific extratropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extratropics, where CO2 variations in the surface and ocean interior are severely undersampled, the difference in the air–sea CO2 flux estimates between the diagnostic models and ocean-interior CO2 inversions is larger (0.18 Pg C yr−1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr−1). Regarding interannual variability of air–sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño–Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr−1) than in the diagnostic models (0.27 ± 0.07 Pg C yr−1).


2015 ◽  
Vol 45 (9) ◽  
pp. 2276-2293 ◽  
Author(s):  
Katsuya Toyama ◽  
Aiko Iwasaki ◽  
Toshio Suga

AbstractSpatiotemporal variability of the subduction rate in the North Pacific from 2005 to 2012 is examined based on the Argo observational data. The subduction rate in the subtropical North Pacific varies significantly from year to year between 25 and 50 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1), and it is well correlated with the Pacific decadal oscillation. The temporal change of the subduction rate is largely determined by that of the late winter mixed layer depth through the lateral induction term. The increase (decrease) in the subduction rate in the subtropical mode water areas accompanies densification (lightening) of the mode density class of the subducted water. The subduction rate variability in the central mode water and eastern subtropical mode water regions is anticorrelated as found in the previous study using the output from an ocean GCM. The subduction rate in the central mode water density range changes dramatically, which is very large in 2005 and 2010 but almost disappears in 2009. The subduction rate variability in the western subtropical mode water regions seems to be correlated with the Pacific decadal oscillation with a lag of a few years.


2008 ◽  
Vol 21 (18) ◽  
pp. 4691-4709 ◽  
Author(s):  
Daniela Matei ◽  
Noel Keenlyside ◽  
Mojib Latif ◽  
Johann Jungclaus

Abstract The relative impact of the subtropical North and South Pacific Oceans on the tropical Pacific climate mean state and variability is estimated using an ocean–atmosphere–sea ice coupled general circulation model. Tailored experiments are performed in which the model is forced by idealized sea surface temperature anomalies (SSTAs) in the subtropics of both hemispheres. The main results of this study suggest that subtropical South Pacific climate variations play a dominant role in tropical Pacific decadal variability and in the decadal modulation of El Niño–Southern Oscillation (ENSO). In response to a 2°C warming in the subtropical South Pacific, the equatorial Pacific SST increases by about 0.6°C, approximately 65% larger than the change in the North Pacific experiment. The subtropics affect equatorial SST mainly through atmosphere–mixed layer interactions in the South Pacific experiments; the response is mostly accomplished within a decade. The “oceanic tunnel” dominates in the North Pacific experiments; the response takes at least 100 yr to be accomplished. Similar sensitivity experiments conducted with the stand-alone atmosphere model showed that both air–sea interactions and ocean dynamics are crucial in shaping the tropical climate response. The statistics of ENSO exhibit significant changes in amplitude and frequency in response to a warming/cooling of the subtropical South Pacific: a 2°C warming (cooling) of subtropical South Pacific SST reduces (increases) the interannual standard deviation by about 30% (20%) and shortens (lengthens) the ENSO period. The simulated changes in the equatorial zonal SST gradient are the main contributor to the modulation of ENSO variability. The simulated intensification (weakening) of the annual cycle in response to an enhanced warming (cooling) in subtropical South Pacific partly explains the shifts in frequency, but may also lead to a weaker (stronger) ENSO. The subtropical North Pacific thermal forcing did not change the statistical properties of ENSO as strongly.


2018 ◽  
Vol 31 (9) ◽  
pp. 3371-3386 ◽  
Author(s):  
Dingzhu Hu ◽  
Zhaoyong Guan

Abstract Using reanalysis datasets and numerical simulations, the relationship between the stratospheric Arctic vortex (SAV) and the Pacific decadal oscillation (PDO) on decadal time scales was investigated. A significant in-phase relationship between the PDO and SAV on decadal time scales during 1950–2014 is found, that is, the North Pacific sea surface temperature (SST) cooling (warming) associated with the positive (negative) PDO phases is closely related to the strengthening (weakening) of the SAV. This decadal relationship between the North Pacific SST and SAV is different from their relationship on subdecadal time scales. Observational and modeling results both demonstrate that the decadal variation in the SAV is strongly affected by the North Pacific SSTs related to the PDO via modifying the upward propagation of planetary wavenumber-1 waves from the troposphere to the stratosphere. The decreased SSTs over the North Pacific tend to result in a deepened Aleutian low along with a strengthened jet stream over the North Pacific, which excites a weakened western Pacific pattern and a strengthened Pacific–North American pattern. These tropospheric circulation anomalies are in accordance with the decreased refractive index (RI) at middle and high latitudes in the northern stratosphere during the positive PDO phase. The increased RI at high latitudes in the upper troposphere impedes the planetary wavenumber-1 wave from propagating into the stratosphere, and in turn strengthens the SAV. The responses of the RI to the PDO are mainly contributions of the changes in the meridional gradient of the zonal-mean potential vorticity via alteration of the baroclinic term .


Sign in / Sign up

Export Citation Format

Share Document