scholarly journals Interdecadal Change in the Intensity of Interannual Variation of Spring Precipitation over Southern China and Possible Reasons

2019 ◽  
Vol 32 (18) ◽  
pp. 5865-5881 ◽  
Author(s):  
Chao Xu ◽  
Yunting Qiao ◽  
Maoqiu Jian

AbstractThe intensity of interannual variation of spring precipitation over southern China during 1979–2014 and possible reasons for it are investigated in this paper. There is a significant interdecadal change in the intensity of interannual variation of spring precipitation over southern China around 1995/96. The intensity of interannual variation of spring rainfall over South China is stronger during 1979–95 than that during 1996–2014. The possible reason may be the larger amplitude of the sea surface temperature anomaly (SSTA) in the western Pacific Ocean (WP) before 1995/96. The cooler (warmer) SSTA in WP may trigger an abnormal local anticyclone (cyclone) at lower levels. The anomalous southwesterly (northeasterly) flow at the northwestern flank of the WP anticyclone (cyclone) covers South China, transporting more (less) moisture to South China. Meanwhile, the anomalous winds converge (diverge) in South China at lower levels and diverge (converge) at upper levels, which causes the anomalous ascent (descent) to enhance (reduce) the precipitation over there. However, during 1996–2014, the intensity of interannual variation of spring rainfall over the middle and lower reaches of the Yangtze River valley becomes much stronger than that during 1979–95, which is related to the intensified interannual variation of the atmospheric circulation in the middle and high latitudes over Eurasia. The weak (strong) Siberian high and East Asian trough may reduce (enhance) the northerly wind from the middle and high latitudes. As a result, the middle and lower reaches of the Yangtze River valley are subjected to the anomalous southerly wind, favoring more (less) precipitation over there.

2019 ◽  
Vol 53 (9-10) ◽  
pp. 5495-5509 ◽  
Author(s):  
Lili Zeng ◽  
Raymond W. Schmitt ◽  
Laifang Li ◽  
Qiang Wang ◽  
Dongxiao Wang

2016 ◽  
Vol 29 (7) ◽  
pp. 2395-2406 ◽  
Author(s):  
Shixin Wang ◽  
Hongchao Zuo

Abstract Many studies have shown that the northward (southward) displacement of the East Asian westerly jet (EAWJ) drastically reduces (increases) summer rainfall in the Yangtze River valley (YRV). However, the effect of the jet’s intensity on interannual variation in summer rainfall has not been systematically studied. The present study investigates the effect of the EAWJ’s intensity on this interannual variation and analyzes the mechanism by which this process occurs. In early summer, the EAWJ consists of two branches: one located over northern continental East Asia [western branch (EAWJWB)] and one extending from southern China to the northern Pacific [eastern branch (EAWJEB)]. The former merges into the latter over the Yellow Sea. A stronger EAWJEB leads to increased rainfall in the YRV, while the EAWJWB does not significantly affect rainfall in the YRV. The faster EAWJEB directly strengthens midtropospheric warm advection over the YRV because the corresponding changes in the meridional wind and horizontal temperature gradient are insignificant. The strengthened warm advection increases rainfall in the YRV by accelerating both adiabatic ascent and the ascent associated with diabatic heating primarily generated by convection. In midsummer, the EAWJ has no branches and is located over the midlatitudes of Asia. The strengthening of the EAWJ reduces rainfall in the YRV in midsummer through the Pacific–Japan (PJ) pattern. As the EAWJ strengthens, the PJ pattern turns to its positive phase. This results in the deceleration of the midtropospheric westerly wind and a reduction in the meridional temperature contrast, which weakens midtropospheric warm advection. The weakened warm advection in turn reduces rainfall in the YRV, following the process outlined for early summer.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 298 ◽  
Author(s):  
Qiu-Lin Wu ◽  
Li-Mei He ◽  
Xiu-Jing Shen ◽  
Yu-Ying Jiang ◽  
Jie Liu ◽  
...  

The fall armyworm (FAW), native to the Americas, has rapidly invaded the whole of Southern China since January 2019. In addition, it can survive and breed in the key maize- and rice- growing area of the Yangtze River Valley. Furthermore, this pest is also likely to continue infiltrating other cropping regions in China, where food security is facing a severe threat. To understand the potential infestation area of newly-invaded FAW from the Yangtze River Valley, we simulated and predicted the possible flight pathways and range of the populations using a numerical trajectory modelling method combining meteorological data and self-powered flight behavior parameters of FAW. Our results indicate that the emigration of the first and second generations of newly-invaded FAW initiating from the Yangtze River Valley started on 20 May 2019 and ended on 30 July 2019. The spread of migratory FAW benefitted from transport on the southerly summer monsoon so that FAW emigrants from the Yangtze River Valley can reach northern China. The maize-cropping areas of Northeastern China, the Korean Peninsula and Japan are at a high risk. This study provides a basis for early warning and a broad picture of FAW migration from the Yangtze River Valley.


1999 ◽  
Vol 12 (1) ◽  
pp. 115-131 ◽  
Author(s):  
Arthur N. Samel ◽  
Wei-Chyung Wang ◽  
Xin-Zhong Liang

Abstract Yearly variations in the observed initial and final dates of heavy, persistent monsoon rainband precipitation across China are quantified. The development of a semiobjective analysis that identifies these values also makes it possible to calculate annual rainband duration and total rainfall. Relationships between total rainband precipitation and the Eurasian circulation are then determined. This research is designed such that observed rainband characteristics can be used in future investigations to evaluate GCM simulations. Normalized daily precipitation time series are analyzed between 1951 and 1990 for 85 observation stations to develop criteria that describe general rainband characteristics throughout China. Rainfall is defined to be “heavy” if the daily value at a given location is greater than 1.5% of the annual mean total. Heavy precipitation is then shown to be “persistent” and is thus identified with the rainband when the 1.5% threshold is exceeded at least 6 times in a 25-day period. Finally, rainband initial (final) dates are defined to immediately follow (precede) a minimum period of 5 consecutive days with no measurable precipitation. A semiobjective analysis based on the above definitions and rainband climatology is then applied to the time series to determine annual initial and final dates. Analysis application produces results that closely correspond to the systematic pattern observed across China, where the rainband arrives in the south during May, advances to the Yangtze River valley in June, and then to the north in July. Rainband duration (i.e., final − initial + 1) is approximately 30–40 days while total rainfall decreases from south to north. A significant positive correlation is found between total rainfall and duration interannual variability, where increased rainband precipitation corresponds to initial (final) dates that are anomalously early (late). No clear trends are identified except over north China, where both duration and total rainfall decrease substantially after 1967. The Eurasian sea level pressure and 500-hPa height fields are then correlated with total rainfall over south China, the Yangtze River valley, and north China to identify statistically significant relationships. Results indicate that precipitation amount is influenced by the interaction of several circulation features. Total rainfall increases over south China when the surface Siberian high ridges to the south and is overrun by warm moist air aloft. Yangtze River valley precipitation intensifies when westward expansion of the subtropical high along with strengthening of the Siberian high and monsoon low cause moisture advection, upward motion, and the thermal gradient along the Mei-Yu front to increase. North China total rainfall increases in response to intense heating over the landmass, westward ridging of the subtropical high, and greater moisture transport over the region.


2011 ◽  
Vol 24 (8) ◽  
pp. 2116-2133 ◽  
Author(s):  
Chenghai Wang ◽  
Xin-Zhong Liang ◽  
Arthur N. Samel

Abstract Analysis of 26 simulations from 11 general circulation models (GCMs) of the Atmospheric Model Intercomparison Project (AMIP) II reveals a basic inability to simultaneously predict the Yangtze River Valley (YRV) precipitation (PrYRV) annual cycle and summer interannual variability in response to observed global SST distributions. Only the Community Climate System Model (CCSM) and L’Institut Pierre-Simon Laplace (IPSL) models reproduce the observed annual cycle, but both fail to capture the interannual variability. Conversely, only Max Planck Institute (MPI) simulates interannual variability reasonably well, but its annual cycle leads observations by 2 months. The interannual variability of PrYRV reveals two distinct signals in observations, which are identified with opposite subtropical Pacific SST anomalies in the east (SSTe) and west (SSTw). First, negative SSTe anomalies are associated with equatorward displacement of the upper-level East Asian jet (ULJ) over China. The resulting transverse circulation enhances low-level southerly flow over the South China Sea and south China while convergent flow and upward motion increase over the YRV. Second, positive SSTw anomalies are linked with westward movement of the subtropical high over the west-central Pacific. This strengthens the low-level jet (LLJ) to the south of the YRV. These two signals act together to enhance PrYRV. The AMIP II suite, however, generally fails to reproduce these features. Only the MPI.3 realization is able to simulate both signals and, consequently, realistic PrYRV interannual variations. It appears that PrYRV is governed primarily by coherent ULJ and LLJ variations that act as the atmospheric bridges to remote SSTe and SSTw forcings, respectively. The PrYRV response to global SST anomalies may then be realistically depicted only when both bridges are correctly simulated. The above hypothesis does not exclude other signals that may play important roles linking PrYRV with remote SST forcings through certain atmospheric bridges, which deserve further investigation.


2017 ◽  
Vol 30 (22) ◽  
pp. 9183-9194 ◽  
Author(s):  
Li Liu ◽  
Renhe Zhang ◽  
Zhiyan Zuo

The relation of spring (March–May) to summer (July–August) precipitation in eastern China is examined using observed data. It is found that when spring precipitation from the lower and middle reaches of the Yangtze River valley to northern China (the YRNC region) is higher (lower), more (less) summer precipitation occurs in northeastern China and the lower and middle reaches of the Yangtze River valley, and less (more) in southeastern China. The analysis of physical mechanism showed that higher (lower) spring precipitation in the YRNC region is closely related to wet (dry) spring soil moisture, which decreases (increases) the surface temperature and sensible heat flux in late spring. Because the memory of spring soil moisture in the YRNC region reaches about 2.4 months, the surface thermal anomaly lasts into the subsequent summer, resulting in a weak (strong) East Asian summer monsoon. A weak East Asian summer monsoon corresponds to an anomalous anticyclone and a cyclone over southeastern and northeastern China, respectively, in the lower troposphere. The anomalous anticyclone depresses the summer precipitation in southeastern China, and the anomalous cyclone promotes precipitation over northeastern China. The abnormal northerly and southerly winds associated with the anomalous cyclone and anticyclone, respectively, converge in the lower and middle reaches of the Yangtze River valley, inducing more summer precipitation there.


Author(s):  
Young Min Yang ◽  
Bin Wang ◽  
Juan Li

It has been an outstanding challenge for global climate models to simulate and predict East Asia (EA) summer monsoon (EASM) rainfall. This study evaluates the dynamical hindcast skills with the newly developed Nanjing University of Information Science and Technology Earth System Model version 3.0 (NESM3.0). To improve the poor prediction of an earlier version of NESM3.0, we have modified convective parameterization schemes to suppress excessive deep convection and enhance insufficient shallow and stratiform clouds. The new version of NESM3.0 with modified parameterizations (MOD hereafter) yields significantly improved rainfall prediction in the northern and southern China but not over the Yangtze River Valley. The improved prediction is primarily attributed to the improvements in the predicted climatological summer mean rainfall and circulations, seasonal march of the subtropical rain belt, Nino 3.4 SST anomaly, and the rainfall anomalies associated with the development and decay of El Nino events. However, the MOD still has notable biases in the predicted leading mode of interannual variability of precipitation. The leading mode captures the dry (wet) anomalies over the South China Sea (northern EA) but misplaced precipitation anomalies over the Yangtze River Valley. The model can capture the interannual variation of the circulation indices very well, but the bias in the circulation-rainfall connection caused predicted rainfall errors. The results here suggest that over EA land regions, the skillful rainfall prediction relies on not only model’s capability in predicting better summer mean and seasonal march of rainfall and ENSO teleconnection with EASM, but also accurate prediction of the leading modes of interannual variability.


2007 ◽  
Vol 20 (21) ◽  
pp. 5344-5355 ◽  
Author(s):  
Rucong Yu ◽  
Tianjun Zhou

Abstract A significant interdecadal cooling with vivid seasonality and three-dimensional (3D) structure is first revealed in the upper troposphere and lower stratosphere over East Asia. A robust upper-tropospheric cooling appears in March and has two peaks in April and August, but in June, a moderate upper-tropospheric warming interrupts the cooling, while strong cooling occurs in the lower stratosphere. The seasonally dependent upper-tropospheric cooling leads to a clear seasonality of interdecadal changes in the atmospheric general circulation and precipitation against their normal seasonal cycle over East Asia. In March, precipitation over southern China (south of 26°N) has increased in accordance with the strong upper-tropospheric cooling occurring in northeast Asia. In April and May, following the southward extension and intensification of the upper-tropospheric cooling, the normal seasonal march of the monsoon rainband has been interrupted, resulting in a drying band to the south of the Yangtze River valley in late spring. In June, the moderate upper-tropospheric warming and strong lower-stratospheric cooling over northeast Asia has suddenly enhanced the northward migration of the rainband and resulted in an increase of precipitation in the mid–lower reaches of the Yangtze River and farther north. During July and August, the return of upper-tropospheric cooling has weakened the northward progression of southerly monsoon winds, resulting in a mid–lower Yellow River valley (34°–40°N) drought and excessive rain in the Yangtze River valley. The change of surface temperature is well correlated with the change in precipitation, especially in the spring. The surface cooling is generally collocated with excessive rain, while the warming is generally collocated with droughts. Possible causes for the robust interdecadal change are discussed, and stratosphere–troposphere interaction is suggested to play a crucial role in seasonally dependent 3D atmospheric cooling over East Asia.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 487 ◽  
Author(s):  
Young-Min Yang ◽  
Bin Wang ◽  
Juan Li

It has been an outstanding challenge for global climate models to simulate and predict East Asia summer monsoon (EASM) rainfall. This study evaluated the dynamical hindcast skills with the newly developed Nanjing University of Information Science and Technology Earth System Model version 3.0 (NESM3.0). To improve the poor prediction of an earlier version of NESM3.0, we modified convective parameterization schemes to suppress excessive deep convection and enhance insufficient shallow and stratiform clouds. The new version of NESM3.0 with modified parameterizations (MOD hereafter) yields improved rainfall prediction in the northern and southern China but not over the Yangtze River Valley. The improved prediction is primarily attributed to the improvements in the predicted climatological summer mean rainfall and circulations, Nino 3.4 SST anomaly, and the rainfall anomalies associated with the development and decay of El Nino events. However, the MOD still has biases in the predicted leading mode of interannual variability of precipitation. The leading mode captures the dry (wet) anomalies over the South China Sea (northern East Asia) but misplaces precipitation anomalies over the Yangtze River Valley. The model can capture the interannual variation of the circulation indices very well. The results here suggest that, over East Asia land regions, the skillful rainfall prediction relies on not only model’s capability in predicting better summer mean and ENSO teleconnection with EASM, but also accurate prediction of the leading modes of interannual variability.


Sign in / Sign up

Export Citation Format

Share Document