scholarly journals Freshwater Flux and Ocean Chlorophyll Produce Nonlinear Feedbacks in the Tropical Pacific

2019 ◽  
Vol 32 (7) ◽  
pp. 2037-2055 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Feng Tian ◽  
Antonio J. Busalacchi ◽  
Xiujun Wang

Abstract Various forcing and feedback processes coexist in the tropical Pacific, which can modulate El Niño–Southern Oscillation (ENSO). In particular, large covariabilities in chlorophyll (Chl) and freshwater flux (FWF) at the sea surface are observed during ENSO cycles, acting to execute feedbacks on ENSO through the related ocean-biology-induced heating (OBH) and FWF forcing, respectively. At present, the related effects and underlying mechanism are strongly model dependent and are still not well understood. Here, a new hybrid coupled model (HCM), developed to represent interactions between the atmosphere and ocean physics–biology (AOPB) in the tropical Pacific, is used to examine the extent to which ENSO can be modulated by interannually covarying anomalies of FWF and Chl. HCM AOPB–based sensitivity experiments indicate that individually the FWF forcing tends to amplify ENSO via its influence on the stratification and vertical mixing in the upper ocean, whereas the OBH feedback tends to damp it. While the FWF- and OBH-related individual effects tend to counteract each other, their combined effects give rise to unexpected situations. For example, an increase in the FWF forcing intensity actually acts to decrease the ENSO amplitude when the OBH feedback effects coexist at a certain intensity. The nonlinear modulation of the ENSO amplitude can happen when the FWF-related amplifying effects on ENSO are compensated for by OBH-related damping effects. The results offer insight into modulating effects on ENSO, which are evident in nature and different climate models.

2021 ◽  
Author(s):  
Eleftheria Exarchou ◽  
Pablo Ortega ◽  
Maria Belén Rodrıguez de Fonseca ◽  
Teresa Losada Doval ◽  
Irene Polo Sanchez ◽  
...  

<p>El Niño–Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eleftheria Exarchou ◽  
Pablo Ortega ◽  
Belén Rodríguez-Fonseca ◽  
Teresa Losada ◽  
Irene Polo ◽  
...  

AbstractEl Niño-Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO.


2020 ◽  
Author(s):  
◽  
Mohammad Alam

Westerly wind bursts (WWBs), usually occurring in the tropical Pacific region, play a vital role in El Niño–Southern Oscillation (ENSO). In this study, we use a hybrid coupled model (HCM) for the tropical Pacific Ocean-atmosphere system to investigate WWBs impact on ENSO. To achieve this goal, two experiments are performed: (a) first, the standard version of the HCM is integrated for years without prescribed WWBs events; and (b) second, the WWBs are added into the HCM (HCM-WWBs). Results show that HCM-WWBs can generate not only more realistic climatology of sea surface temperature (SST) in both spatial structure and temporal amplitudes, but also better ENSO features, than the HCM. In particular, the HCM-WWBs can capture the central Pacific (CP) ENSO events, which is absent in original HCM. Furthermore, the possible physical mechanisms responsible for these improvements by WWBs are discussed.


Author(s):  
Anna-Lena Deppenmeier ◽  
Frank O. Bryan ◽  
William Kessler ◽  
LuAnne Thompson

AbstractThe tropical Pacific cold tongue (CT) plays a major role in the global climate system. The strength of the CT sets the zonal temperature gradient in the Pacific that couples with the atmospheric Walker circulation. This coupling is an essential component of the El Niño Southern Oscillation (ENSO). The CT is supplied with cold water by the equatorial undercurrent that follows the thermocline as it shoals toward the east, adiabatically transporting cold water towards the surface. As the thermocline shoals, its water is transformed through diabatic processes producing water mass transformation (WMT) that allows water to cross mean isotherms. Here, we examine WMT in the cold tongue region from a global high resolution ocean simulation with saved budget terms that close its heat budget exactly. Using the terms of the heat budget, we quantify each individual component of WMT (vertical mixing, horizontal mixing, eddy fluxes, solar penetration), and find that vertical mixing is the single most important contribution in the thermocline, while solar heating dominates close to the surface. Horizontal diffusion is much smaller. During El Niño events, vertical mixing, and hence cross-isothermal flow as a whole, is much reduced, while during La Niña periods strong vertical mixing leads to strong WMT, thereby cooling the surface. This analysis demonstrates the enhancement of diabatic processes during cold events, which in turn enhances cooling of the CT from below the surface.


2020 ◽  
Author(s):  
Mario Rodrigo ◽  
Javier Garcia-Serrano ◽  
Ileana Bladé ◽  
Froila M. Palmeiro ◽  
Bianca Mezzina

<p>The European Consortium EC-EARTH climate model version 3.1 is used to assess the effects of a well-resolved stratosphere on the representation of El Niño-Southern Oscillation (ENSO). Three 100-year  long experiments with fixed radiative forcing representative of the present climate are compared: one with the top at 0.01hPa and 91 vertical levels (HIGH-TOP), another with the top at 5hPa and 62 vertical levels (LOW-TOP), and another high-top experiment with the stratosphere nudged to the climatology of HIGH-TOP from 10hPa upwards (NUDG). The differences in vertical resolution between HIGH-TOP and LOW-TOP start at around 100hPa. This study focuses on the canonical ENSO phenomenon, which is the most important source of variability and predictability on seasonal-to-interannual timescales.</p><p> </p><p>Preliminary results indicate that EC-EARTH realistically simulates the ENSO SST pattern in the tropical Pacific regardless of vertical resolution, although HIGH-TOP (LOW-TOP) overestimates (underestimates) the SST variability during boreal summer (winter). In both configurations, the SST tongue is narrower meridionally and slightly shifted towards the central-western Pacific compared to observations, a common bias of climate models. Resolving the stratosphere has a clear effect on the power spectrum of the Niño3.4 index: as compared to observations where there is a well-known frequency range of 2-7 years, HIGH-TOP and LOW-TOP have a prominent peak centered at 4-5 years but additionally both simulations display another peak, towards higher (~ 2yrs) and lower (~ 7yrs) frequencies, respectively. Another impact of including a well-resolved stratosphere is to systematically enhance the amplitude of the SST, wind and convective anomalies in the tropical Pacific throughout the entire ENSO cycle. Finally, similar differences are obtained when comparing HIGH-TOP and NUDG, suggesting an active role of the tropical stratospheric variability on ENSO.</p>


2020 ◽  
Vol 54 (11-12) ◽  
pp. 4605-4626 ◽  
Author(s):  
Chuan Gao ◽  
Rong-Hua Zhang ◽  
Kristopher B. Karnauskas ◽  
Lei Zhang ◽  
Feng Tian

2019 ◽  
Vol 49 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Yuchao Zhu ◽  
Rong-Hua Zhang

AbstractClimate models suffer from significant biases over the tropical Pacific Ocean, including a too-cold cold tongue and too-warm temperature at the depth of the thermocline. The emergence of model biases can be partly attributed to vertical mixing parameterizations, in which there are great uncertainties in selections of functional forms and empirical parameters. In this paper, the impacts of two different vertical mixing schemes on the tropical Pacific temperature simulations are investigated using version 5 of the Modular Ocean Model (MOM5). One vertical mixing scheme is the widely used K-profile parameterization (KPP) scheme, and the other is a hybrid mixing scheme (the Chen scheme) by combining a Kraus–Turner-type bulk mixed layer (ML) model with Peters et al.’s shear instability mixing model (PGT model). It is shown that the Chen scheme works better than the KPP scheme for SST simulation but produces an exaggerated subsurface warm bias simultaneously. The better SST simulation can be attributed to the employment of the PGT model, which produces lower levels of shear instability mixing than its counterpart in the KPP scheme. Furthermore, a modified KPP scheme is presented in which its shear instability mixing model and constant background diffusivity are replaced by the PGT model and the Argo-derived background diffusivity, respectively. This new scheme is then employed into MOM5-based ocean-only and coupled simulations, demonstrating substantial improvements in temperature simulations over the tropical Pacific. The modified KPP scheme can be easily employed into other ocean models, offering an effective way to improve ocean simulations.


2010 ◽  
Vol 138 (5) ◽  
pp. 1715-1737 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Guihua Wang ◽  
Dake Chen ◽  
A. J. Busalacchi ◽  
E. C. Hackert

Abstract Freshwater flux (FWF) forcing–induced feedback has not been represented adequately in many coupled ocean–atmosphere models of the tropical Pacific. Previously, various approximations have been made in representing the FWF forcing in climate modeling. In this article, using a hybrid coupled model (HCM), sensitivity experiments are performed to examine the extent to which this forcing and related feedback effects can contribute to tropical biases in interannual simulations of the tropical Pacific. The total FWF into the ocean, represented by precipitation (P) minus evaporation (E), (P − E), is separated into its climatological part and interannual anomaly part: FWFTotal = (P − E)clim + FWFinter. The former can be prescribed (seasonally varying); the latter can be captured using an empirical model linking with large-scale sea surface temperature (SST) variability. Four cases are considered with different FWFinter specifications: interannual (P − E) forcing [FWFinter = (P − E)inter], interannual P forcing (FWFinter = Pinter), interannual E forcing (FWFinter = −Einter), and climatological (P − E) forcing (FWFinter = 0.0), respectively. The HCM-based experiments indicate that different FWFinter approximations can modulate interannual variability in a substantial way. The HCM with the interannual (P − E) forcing, in which a positive SST − (P − E)inter feedback is included explicitly, has a reasonably realistic simulation of interannual variability. When FWFinter is approximated in some ways, the simulated interannual variability can be modulated significantly: it is weakened with the climatological (P − E) forcing and is even more damped with the interannual E forcing, but is exaggerated with the interannual P forcing. Quantitatively, taking the interannual (P − E) forcing run as a reference, the Niño-3 SST variance can be reduced by about 12% and 26% in the climatological (P − E) forcing run and interannual E forcing run, respectively, but overestimated by 11% in the Pinter forcing run. It is demonstrated that FWF can be a clear bias source for coupled model simulations in the tropical Pacific.


2009 ◽  
Vol 22 (4) ◽  
pp. 923-939 ◽  
Author(s):  
J. C. H. Chiang ◽  
Y. Fang ◽  
P. Chang

Abstract The authors argue that a reduction to the stochastic forcing of the El Niño–Southern Oscillation (ENSO) wrought by Pacific-wide climate changes in response to mid-Holocene (6000 BP) orbital forcing is a viable hypothesis for the observed reduction of ENSO activity during that time. This conclusion is based on comprehensive analysis of an intermediate coupled model that achieves significant reduction to ENSO variance in response to mid-Holocene orbital forcing. The model’s excellent simulation of the tropical Pacific interannual variability lends credibility to the results. Idealized simulations demonstrate that the mid-Holocene influence is communicated to the tropical Pacific largely via climate changes outside of the tropical Pacific, rather than from insolation changes directly on the tropical Pacific. This is particularly true for changes to the ENSO, but also with changes to the cold tongue annual cycle. Previously proposed mechanisms for teleconnected mid-Holocene ENSO changes, including forcing of ENSO by a strengthened Asian summer monsoon and an increase in the annual cycle forcing on the tropical Pacific leading to a reduction in ENSO activity by frequency entrainment, do not appear to occur in these simulations. Rather, the authors show that the modeled mid-Holocene climate exhibits a pronounced reduction in Pacific meridional mode activity that has been recently shown to be a forcing on ENSO, though the reasons for this reduction are still to be explained. The contrasting nature of the results compared to previous studies highlights the effect of the prevailing ENSO paradigm on this problem. By showing that an externally forced ENSO model is equally capable of explaining mid-Holocene ENSO reduction as its nonlinear, weakly chaotic counterpart, it is demonstrated that the mid-Holocene ENSO data point cannot yet discriminate between these two paradigms of ENSO.


Sign in / Sign up

Export Citation Format

Share Document