scholarly journals Uncertainty in Net Surface Heat Flux due to Differences in Commonly Used Albedo Products

2020 ◽  
Vol 33 (1) ◽  
pp. 303-315
Author(s):  
Allison Hogikyan ◽  
Meghan F. Cronin ◽  
Dongxiao Zhang ◽  
Seiji Kato

AbstractThe ocean surface albedo is responsible for the distribution of solar (shortwave) radiant energy between the atmosphere and ocean and therefore is a key parameter in Earth’s surface energy budget. In situ ocean observations typically do not measure upward reflected solar radiation, which is necessary to compute net solar radiation into the ocean. Instead, the upward component is computed from the measured downward component using an albedo estimate. At two NOAA Ocean Climate Station buoy sites in the North Pacific, the International Satellite Cloud Climatology Project (ISCCP) monthly climatological albedo has been used, while for the NOAA Global Tropical Buoy Array a constant albedo is used. This constant albedo is also used in the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk flux algorithm. This study considers the impacts of using the more recently available NASA Cloud and the Earth’s Radiant Energy System (CERES) albedo product for these ocean surface heat flux products. Differences between albedo estimates in global satellite products like these imply uncertainty in the net surface solar radiation heat flux estimates that locally exceed the target uncertainty of 1.0 W m−2 for the global mean, set by the Global Climate Observing System (GCOS) of the World Meteorological Organization (WMO). Albedo has large spatiotemporal variability on hourly, monthly, and interannual time scales. Biases in high-resolution SWnet (the difference between surface downwelling and upwelling shortwave radiation) can arise if the albedo diurnal cycle is unresolved. As a result, for periods when satellite albedo data are not available it is recommended that an hourly climatology be used when computing high-resolution net surface shortwave radiation.

Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 65
Author(s):  
Fen Wang ◽  
Yaokun Li ◽  
Jianping Li

The surface air temperature (SAT) interannual variability during the spring-to-summer transition over South China (SC) has been decomposed into two dominant modes by applying empirical orthogonal function (EOF) analysis. The first EOF mode (EOF1) is characterized by homogenous SAT anomalies over SC, whereas the second EOF mode (EOF2) features a dipole SAT anomaly pattern with opposite anomalies south and north of the Yangtze River. A regression analysis of surface heat flux and advection anomalies on the normalized principle component time series corresponding to EOF1 suggests that surface heat flux anomalies can explain SAT anomalies mainly by modulating cloud-shortwave radiation. Negative cloud anomalies result in positive downward shortwave radiation anomalies through the positive shortwave cloud radiation effect, which favor warm SAT anomalies over most of SC. For EOF2, the distribution of advection anomalies resembles the north–south dipole pattern of SAT anomalies. This suggests that wind-induced advection plays an important role in the SAT anomalies of EOF2. Negative SAT anomalies are favored by cold advection from northerly wind anomalies over land surfaces in high-latitude regions. Positive SAT anomalies are induced by warm advection from southerly wind anomalies over the ocean in low-latitude regions.


2021 ◽  
pp. 174425912110405
Author(s):  
Erlin Meng ◽  
Jiawang Yang ◽  
Ruonan Cai ◽  
Bo Zhou ◽  
Junqi Wang

Subtropical climate is characterized by high solar altitude angle in summer which causes the roof get more heat through solar radiation. GR, DSR, and CR all can decrease solar radiation heat gain of the roof. However, few researches have been done to the comparison of the thermal performance of these three roofs, especially in subtropical climate. In this study, four rooms were built separately with GR, DSR, CR, and ordinary roof (OR). The experiment was done from July 23 to August 4. Results showed that stabilities of the indoor air temperature of the four rooms were: DSR room > GR room > CR room > OR room. The GR, CR, and DSR can reduce the external surface temperature by 13.7°C, 12.0°C, and 4.8°C during the day while bring a temperature rise of 2.3°C, 1.9°C, and 0.9°C at night. Correlation analysis results showed that the internal surface heat flux of GR and DSR were negative correlated with weather factors while internal surface heat flux of OR and CR were positive correlated with weather factors. This study can give support to the selection between GR, DSR, and CR.


2012 ◽  
Vol 25 (2) ◽  
pp. 800-814 ◽  
Author(s):  
Takaaki Yokoi ◽  
Tomoki Tozuka ◽  
Toshio Yamagata

Abstract The seasonal and interannual variations of the sea surface temperature (SST) above the Seychelles Dome (SD) are investigated using outputs from an OGCM. The SST warms from August to April and cools from May to July. The surface heat flux plays the most important role in the seasonal variation, and it is mostly due to shortwave radiation. The horizontal advection tends to warm the SST in austral winter owing to the southward Ekman heat transport associated with the Indian summer monsoon. The cooling by the vertical turbulent diffusion becomes most effective in austral summer owing to the thin mixed layer during that time. On the interannual time scale, the SST becomes anomalously warm (cool) when the SD is weak (strong). In contrast to the seasonal variation, the vertical diffusion plays the most important role and causes anomalous warming (cooling). This warming (cooling) is due to the anomalously warm (cold) water below the mixed layer as a result of the deeper (shallower) thermocline in response to ocean dynamics. Also, the cooling by the vertical diffusion becomes less (more) efficient, because the mixed layer is anomalously thick (thin). The horizontal advection contributes to the anomalous warming (cooling) due to the anomalous southward (northward) Ekman heat transport. On the other hand, the anomalous surface heat flux tends to cool (warm) the mixed layer, because the warming of the mixed layer by the shortwave radiation becomes less (more) efficient due to the anomalously thick (thin) mixed layer.


2013 ◽  
Vol 805-806 ◽  
pp. 1603-1611 ◽  
Author(s):  
Chun Li Tang ◽  
Xiao Wei Zhang

This paper presents a radiant model based on the radiant resistance analysis theory and the results of numerical simulations of double glass window. The two-dimensional steady state model is formulated based upon the radiation and free convection heat transfer at different external and internal ambient conditions.The properties of glass which change with incident wavelength are also considered. Specifically, air and CO2 are used as the medium in the 8mm and 10mm cavity of the double glass window, respectively. Several parameters, including transmitted solar radiation flux, temperature distribution, surface heat transfer coefficient for free convection and total surface heat flux are calculated. The results show that transmitted solar radiation flux is slightly lower when filled with CO2 in the cavity than with air due to their absorption difference. Also, the temperature of gas closing to internal glass sheet and the total surface heat flux of internal glass sheet are decreased when filled with CO2 than with air, although the surface heat transfer coefficient is slightly higher when it is CO2. .The temperature variation curves show that less heat flows into the room when filled with CO2 than air in double glass window.


Sign in / Sign up

Export Citation Format

Share Document