scholarly journals Uncertainties in global ocean surface heat flux climatologies derived from ship observations

1995 ◽  
Author(s):  
P.J. Gleckler ◽  
B.C. Weare
2017 ◽  
Vol 56 (4) ◽  
pp. 1043-1057 ◽  
Author(s):  
Jackie C. May ◽  
Clark Rowley ◽  
Charlie N. Barron

AbstractThe Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system provides near-real-time satellite-based gridded surface heat flux fields over the global ocean within hours of the observed satellite measurements. NFLUX can serve as an alternative to current numerical weather prediction models—in particular, the U. S. Navy Global Environmental Model (NAVGEM)—that provide surface forcing fields to operational ocean models. This study discusses the satellite-based shortwave and longwave global gridded analysis fields, which complete the full suite of NFLUX-provided ocean surface heat fluxes. A companion paper discusses the production of satellite swath-level surface shortwave radiation and longwave radiation estimates. The swath-level shortwave radiation estimates are converted into clearness-index values. Clearness index reduces the dependency on solar zenith angle, which allows for the assimilation of observations over a given time window. An automated quality-control process is applied to the swath-level estimates of clearness index and surface longwave radiation. Then 2D variational analyses of the quality-controlled satellite estimates with background atmospheric model fields form global gridded radiative heat flux fields. The clearness-index analysis fields are converted into shortwave analysis fields to be used in other applications. Three-hourly shortwave and longwave analysis fields are created from 1 May 2013 through 30 April 2014. These fields are validated against observations from research vessels and moored-buoy platforms and compared with NAVGEM. With the exception of the mean bias, the NFLUX fields have smaller errors when compared with those of NAVGEM.


2016 ◽  
Vol 29 (20) ◽  
pp. 7507-7527 ◽  
Author(s):  
Oluwayemi A. Garuba ◽  
Barry A. Klinger

Abstract Global warming induces ocean circulation changes that not only can redistribute ocean reservoir temperature stratification but also change the total heat content anomaly of the ocean. Here all consequences of this process are referred to collectively as “redistribution.” Previous model studies of redistributive effects could not measure the net global contribution to the amount of ocean heat uptake by redistribution. In this study, a global ocean model experiment with abrupt increase in surface temperature is conducted with a new passive tracer formulation. This separates ocean heat uptake into contributions due to redistribution temperature and surface heat flux anomalies and those due to the passive advection and mixing of surface heat flux anomalies forced in the atmosphere. For a decline in the Atlantic meridional overturning circulation of about 40%, redistribution nearly doubles the Atlantic passive anomalous surface heat input and depth penetration of temperature anomalies. However, smaller increases in the Indian and Pacific Oceans cause the net global redistributive contribution to be only 25% of the passive contribution. Despite the much larger anomalous surface heat input in the Atlantic, the Pacific gains heat content anomaly similar to that in the Atlantic because of export from the Atlantic and Indian Oceans via the global conveyor belt. Of this interbasin heat transport, most of the passive component comes from the Indian Ocean and the redistributive component comes from the Atlantic.


2020 ◽  
Vol 33 (1) ◽  
pp. 303-315
Author(s):  
Allison Hogikyan ◽  
Meghan F. Cronin ◽  
Dongxiao Zhang ◽  
Seiji Kato

AbstractThe ocean surface albedo is responsible for the distribution of solar (shortwave) radiant energy between the atmosphere and ocean and therefore is a key parameter in Earth’s surface energy budget. In situ ocean observations typically do not measure upward reflected solar radiation, which is necessary to compute net solar radiation into the ocean. Instead, the upward component is computed from the measured downward component using an albedo estimate. At two NOAA Ocean Climate Station buoy sites in the North Pacific, the International Satellite Cloud Climatology Project (ISCCP) monthly climatological albedo has been used, while for the NOAA Global Tropical Buoy Array a constant albedo is used. This constant albedo is also used in the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk flux algorithm. This study considers the impacts of using the more recently available NASA Cloud and the Earth’s Radiant Energy System (CERES) albedo product for these ocean surface heat flux products. Differences between albedo estimates in global satellite products like these imply uncertainty in the net surface solar radiation heat flux estimates that locally exceed the target uncertainty of 1.0 W m−2 for the global mean, set by the Global Climate Observing System (GCOS) of the World Meteorological Organization (WMO). Albedo has large spatiotemporal variability on hourly, monthly, and interannual time scales. Biases in high-resolution SWnet (the difference between surface downwelling and upwelling shortwave radiation) can arise if the albedo diurnal cycle is unresolved. As a result, for periods when satellite albedo data are not available it is recommended that an hourly climatology be used when computing high-resolution net surface shortwave radiation.


2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


Sign in / Sign up

Export Citation Format

Share Document