scholarly journals El Niño–Like Physical and Biogeochemical Ocean Response to Tropical Eruptions

2019 ◽  
Vol 32 (9) ◽  
pp. 2627-2649 ◽  
Author(s):  
Yassir A. Eddebbar ◽  
Keith B. Rodgers ◽  
Matthew C. Long ◽  
Aneesh C. Subramanian ◽  
Shang-Ping Xie ◽  
...  

AbstractThe oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

2021 ◽  
Vol 9 ◽  
Author(s):  
Tianjie Wu ◽  
Shushi Zhang ◽  
Kefeng Zhu ◽  
Hongyun Ma

The ensemble technique is considered to be an effective approach in enhancing the model capacity of intra-seasonal climate change. Since El Niño-Southern Oscillation is one of the critical modes of interannual variability in the tropical Pacific, an appropriate ensemble technique may help minimize model bias in ENSO forecast. This research includes a modified stochastically perturbed parameterization tendencies scheme in the Community Earth System Model to investigate its impact on ENSO prediction. This revised scheme uses independent noise patterns to perturb the tendencies from different physical parameterizations. In the original scheme, only the same noise is employed. The result suggests that the altered approach is in a position to further reduce sea surface temperatures and gain more skill in uncertainty estimation compared to the original one. ENSO’s amplitude is improved especially of its warm phase El Niño, but there is a limited improvement in its spatial structure. The modified scheme also ameliorated the variability of ENSO by increasing the magnitude toward observation. The power spectrum exhibits an increased representation. Besides those findings, we notice that simple ensemble mean may not be able to represent the climate status as it smoothes out some useful signals.


2020 ◽  
Vol 33 (6) ◽  
pp. 2163-2182 ◽  
Author(s):  
Tamás Bódai ◽  
Gábor Drótos ◽  
Mátyás Herein ◽  
Frank Lunkeit ◽  
Valerio Lucarini

AbstractWe study the teleconnection between El Niño–Southern Oscillation (ENSO) and the Indian summer monsoon (IM) in large ensemble simulations, the Max Planck Institute Earth System Model (MPI-ESM), and the Community Earth System Model (CESM1). We characterize ENSO by the June–August Niño-3 box-average SST and the IM by the June–September average precipitation over India, and define their teleconnection in a changing climate as an ensemble-wise correlation. To test robustness, we also consider somewhat different variables that can characterize ENSO and the IM. We utilize ensembles converged to the system’s snapshot attractor for analyzing possible changes in the teleconnection. Our main finding is that the teleconnection strength is typically increasing on the long term in view of appropriately revised ensemble-wise indices. Indices involving a more western part of the Pacific reveal, furthermore, a short-term but rather strong increase in strength followed by some decrease at the turn of the century. Using the station-based Southern Oscillation index (SOI) as opposed to area-based indices leads to the identification of somewhat more erratic trends, but the turn-of-the-century “bump” is well detectable with it. All this is in contrast, if not in contradiction, to the discussion in the literature of a weakening teleconnection in the late twentieth century. We show here that this discrepancy can be due to any of three reasons: 1) ensemble-wise and temporal correlation coefficients used in the literature are different quantities; 2) the temporal moving correlation has a high statistical variability but possibly also persistence; or 3) MPI-ESM does not represent the Earth system faithfully.


2020 ◽  
Vol 20 (11) ◽  
pp. 6521-6539 ◽  
Author(s):  
Hans Brenna ◽  
Steffen Kutterolf ◽  
Michael J. Mills ◽  
Kirstin Krüger

Abstract. The supereruption of Los Chocoyos (14.6∘ N, 91.2∘ W) in Guatemala ∼84 kyr ago was one of the largest volcanic events of the past 100 000 years. Recent petrologic data show that the eruption released very large amounts of climate-relevant sulfur and ozone-destroying chlorine and bromine gases (523±94 Mt sulfur, 1200±156 Mt chlorine, and 2±0.46 Mt bromine). Using the Earth system model (ESM) of the Community Earth System Model version 2 (CESM2) coupled with the Whole Atmosphere Community Climate Model version 6 (WACCM6), we simulated the impacts of the sulfur- and halogen-rich Los Chocoyos eruption on the preindustrial Earth system. Our simulations show that elevated sulfate burden and aerosol optical depth (AOD) persists for 5 years in the model, while the volcanic halogens stay elevated for nearly 15 years. As a consequence, the eruption leads to a collapse of the ozone layer with global mean column ozone values dropping to 50 DU (80 % decrease) and leading to a 550 % increase in surface UV over the first 5 years, with potential impacts on the biosphere. The volcanic eruption shows an asymmetric-hemispheric response with enhanced aerosol, ozone, UV, and climate signals over the Northern Hemisphere. Surface climate is impacted globally due to peak AOD of >6, which leads to a maximum surface cooling of >6 K, precipitation and terrestrial net primary production decrease of >25 %, and sea ice area increases of 40 % in the first 3 years. Locally, a wetting (>100 %) and strong increase in net primary production (NPP) (>700 %) over northern Africa is simulated in the first 5 years and related to a southward shift of the Intertropical Convergence Zone (ITCZ) to the southern tropics. The ocean responds with pronounced El Niño conditions in the first 3 years that shift to the southern tropics and are coherent with the ITCZ change. Recovery to pre-eruption ozone levels and climate takes 15 years and 30 years, respectively. The long-lasting surface cooling is sustained by an immediate increase in the Arctic sea ice area, followed by a decrease in poleward ocean heat transport at 60∘ N which lasts up to 20 years. In contrast, when simulating Los Chocoyos conventionally by including sulfur and neglecting halogens, we simulate a larger sulfate burden and AOD, more pronounced surface climate changes, and an increase in column ozone. By comparing our aerosol chemistry ESM results to other supereruption simulations with aerosol climate models, we find a higher surface climate impact per injected sulfur amount than previous studies for our different sets of model experiments, since the CESM2(WACCM6) creates smaller aerosols with a longer lifetime, partly due to the interactive aerosol chemistry. As the model uncertainties for the climate response to supereruptions are very large, observational evidence from paleo archives and a coordinated model intercomparison would help to improve our understanding of the climate and environment response.


2020 ◽  
Author(s):  
Hsiang-He Lee ◽  
Peter Bogenschutz ◽  
Takanobu Yamaguchi

<p>The low cloud bias in atmospheric models for climate and weather remains an unsolved problem. Coarse vertical resolution in the current global climate models (GCM) may be a significant cause of low cloud bias because planetary boundary layer (PBL) parameterizations, including higher-order turbulence closure (HOC), cannot resolve sharp temperature and moisture gradients often found at the top of subtropical stratocumulus layers. The aim of this work is to implement a new computational method, the Framework for Improvement by Vertical Enhancement (FIVE) into the Energy Exascale Earth System Model (E3SM) and its single column model. Three physics schemes are interfaced to vertically enhanced physics (VEP), which allows for these schemes to be computed on a higher vertical resolution grid compared to rest of the E3SM model.  In this presentation we use VEP for turbulence, microphysics, and radiation parameterizations and demonstrate better representation of subtropical boundary layer clouds while limiting additional computational cost from the increased number of levels.  We will also briefly discuss future plans for an adaptive vertical grid for VEP, which will allow for additional layers to be added only when/where they are needed.</p>


2020 ◽  
Author(s):  
Chih-Chieh Chen ◽  
Changhai Liu ◽  
Mitch Moncrieff ◽  
Yaga Richter

<p>The importance of convective organization on the global circulation has been recognized for a long time, but parameterizations of the associated processes are missing in global climate models. Contemporary convective parameterizations commonly use a convective plume model (or a spectrum of plumes). This is perhaps appropriate for unorganized convection but the assumption of a gap between the small cumulus scale and the large-scale motion fails to recognize mesoscale dynamics manifested in mesoscale convective systems (MCSs) and multi-scale cloud systems associated with the MJO. Organized convection is abundant in environments featuring vertical wind shear, and significantly modulates the life cycle of moist convection, the transport of heat and momentum, and accounts for a large percentage of precipitation in the tropics. Mesoscale convective organization is typically associated with counter-gradient momentum transport, and distinct heating profiles between the convective and stratiform regions.</p><p>Moncrieff, Liu and Bogenschutz (2017) recently developed a dynamical based parameterization of organized moisture convection, referred to as multiscale coherent structure parameterization (MCSP), for global climate models. A prototype version of MCSP has been implemented in the NCAR Community Earth System Model (CESM) and the Energy Exascale Earth System Model (E3SM), positively affecting the distribution of tropical precipitation, convectively coupled tropical waves, and the Madden-Julian oscillation. We will show the further development of the MCSP and its impact on the simulation of mean precipitation and variability in the two global climate models.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Jacob Agyekum ◽  
Thompson Annor ◽  
Benjamin Lamptey ◽  
Emmannuel Quansah ◽  
Richard Yao Kuma Agyeman

A selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were evaluated over the Volta Basin for precipitation. Biases in models were computed by taking the differences between the averages over the period (1950–2004) of the models and the observation, normalized by the average of the observed for the annual and seasonal timescales. The Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC), the Community Climate System Model Version 4 (CCSM4), the Max Planck Institute Earth System Model, Medium Range (MPI-ESM-MR), the Norwegian Earth System Model (NorESM1-M), and the multimodel ensemble mean were able to simulate the observed climatological mean of the annual total precipitation well (average biases of 1.9% to 7.5%) and hence were selected for the seasonal and monthly timescales. Overall, all the models (CESM1-BGC, CCSM4, MPI-ESM-MR, and NorESM1-M) scored relatively low for correlation (<0.5) but simulated the observed temporal variability differently ranging from 1.0 to 3.0 for the seasonal total. For the annual cycle of the monthly total, the CESM1-BGC, the MPI-ESM-MR, and the NorESM1-M were able to simulate the peak of the observed rainy season well in the Soudano-Sahel, the Sahel, and the entire basin, respectively, while all the models had difficulty in simulating the bimodal pattern of the Guinea Coast. The ensemble mean shows high performance compared to the individual models in various timescales.


2020 ◽  
Author(s):  
Charlotte Lang ◽  
Charles Amory ◽  
Alison Delhasse ◽  
Stefan Hofer ◽  
Christoph Kittel ◽  
...  

&lt;p&gt;We have compared the surface mass (SMB) and energy balance of the Earth System model (ESM) CESM (Community Earth System Model) with those of the regional climate model (RCM) MAR (Mod&amp;#232;le Atmosph&amp;#233;rique R&amp;#233;gional) forced by CESM over the present era (1981 &amp;#8212; 2010) and the future (2011 &amp;#8212; 2100 with SSP585 scenario).&lt;/p&gt;&lt;p&gt;Until now, global climate models (GCM) and ESMs forcing RCMs such as MAR didn&amp;#8217;t include a module able to simulate snow and energy balance at the surface of a snow pack like the SISVAT module of MAR and were therefore not able to simulate the SMB of an ice sheet. Evaluating the added value of an RCM compared to a GCM could only be done by comparing atmospheric outputs (temperature, wind, precipitation &amp;#8230;) in both models. CESM is the first ESM including a land model capable of simulating the surface of an ice sheet and thus to directly compare the SMB of an RCM and an ESM the first time.&lt;/p&gt;&lt;p&gt;Our results show that, if the SMB and is components are very similar in CESM and MAR over the present era, they quickly start to diverge in our future projection, the SMB of MAR decreasing more than that of CESM. This difference in SMB evolution is almost exclusively explained by a much larger increase of the melter runoff in MAR compared to CESM whereas the temporal evolution of snowfall, rainfall and sublimation is comparable in both runs.&lt;/p&gt;


2017 ◽  
Vol 51 (7-8) ◽  
pp. 2681-2694 ◽  
Author(s):  
Hyung-Gyu Lim ◽  
Jong-Yeon Park ◽  
Jong-Seong Kug

Sign in / Sign up

Export Citation Format

Share Document