organized convection
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Michael M. French

Abstract The Weather Surveillance Radar - 1988 Doppler (WSR-88D) network has undergone several improvements in the last decade with the upgrade to dual-polarization capabilities and the ability for forecasters to re-scan the lowest levels of the atmosphere more frequently through the use of Supplemental Adaptive Intra-volume Scanning (SAILS). SAILS reduces the revisit period for scanning the lowest 1 km of the atmosphere but comes at the cost of a longer delay between scans at higher altitudes. This study quantifies how often radar Volume Coverage Patterns (VCPs) and all available SAILS options are used during the issuance of 148,882 severe thunderstorm and 18,263 tornado warnings, and near 10,474 tornado, 58,934 hail, and 127,575 wind reports in the dual-polarization radar era. A large majority of warnings and storm reports were measured with a VCP providing denser low-level sampling coverage. More frequent low-level updates were employed near tornado warnings and reports compared to severe thunderstorm warnings and hail or wind hazards. Warnings issued near a radar providing three extra low-level scans (SAILSx3) were more likely to be verified by a hazard with a positive lead time than warnings with fewer low-level scans. However, extra low-level scans were more frequently used in environments supporting organized convection as shown using watches issued by the Storm Prediction Center. Recently, the number of mid-level radar elevation scans is declining per hour, which can adversely affect the tracking of convective polarimetric signatures, like ZDR columns, which were found above the 0.5° elevation angle in over 99% of cases examined.


2021 ◽  
Vol 14 (6) ◽  
pp. 4035-4049
Author(s):  
Mark R. Muetzelfeldt ◽  
Robert S. Plant ◽  
Peter A. Clark ◽  
Alison J. Stirling ◽  
Steven J. Woolnough

Abstract. Toward the goal of linking wind shear with the mesoscale organization of deep convection, a procedure for producing a climatology of tropical wind shear from the output of the Met Office Unified Model climate model is presented. Statistical information from wind profiles from tropical grid columns is used to produce a tractable number (10) of profiles that efficiently span the space of all wind profiles. Physical arguments are used to filter wind profiles that are likely to be associated with organized convection: only grid columns with substantial convective available potential energy (CAPE) and those with shear in the upper quartile are considered. The profiles are rotated so that their wind vectors at 850 hPa are aligned, in order to be able to group like profiles together, and their magnitudes at each level are normalized. To emphasize the effect of lower levels, where the organization effects of shear are thought to be strongest, the profiles above 500 hPa are multiplied by 14. Principal component analysis is used to truncate the number of dimensions of the profiles to seven (which explains 90 % of the variance), and the truncated profiles are clustered using a K-means clustering algorithm. The median of each cluster defines a representative wind profile (RWP). Each cluster contains information from thousands of wind profiles with different locations, times and 850 hPa wind directions. To summarize the clusters statistically, we interpret the RWPs as pseudo-wind profiles and display the geographic frequency, seasonal frequency and histograms of wind direction at 850 hPa for each cluster. Geographic patterns are evident, and certain features of the spatio-temporal distributions are matched to observed distributions of convective organization. The form of the RWPs is also matched to specific wind profiles from case studies of organized convection. By performing the analysis on climate-model output, we lay the foundations for the development of the representation of shear-induced organization in a convection parametrization scheme (CPS). This would use the same methodology to diagnose where the organization of convection occurs and modify the CPS in an appropriate manner to represent it. The procedure could also be used as a diagnostic tool for evaluating and comparing climate models.


2021 ◽  
Vol 56 (7-8) ◽  
pp. 2595-2595
Author(s):  
Basile Poujol ◽  
Andreas F. Prein ◽  
Maria J. Molina ◽  
Caroline Muller

2021 ◽  
Author(s):  
Basile Poujol ◽  
Andreas Prein ◽  
Caroline Muller ◽  
Maria Molina

<p>Organized convective systems produce heavier downpours and can become more intense with climate change. While organized convection is well studied in the tropics and mid-latitudes, few studies have focused on the physics and climate change impacts of pan-Arctic convective systems, where they can produce flash flooding, landslides, or ignite wildfires.</p><p>We use a convection-permitting model to simulate Alaska’s climate under current and end of the century high emission scenario conditions. We apply a precipitation tracking algorithm to identify intense, organized convective systems, which are projected to triple in frequency and extend to the northernmost regions of Alaska under future climate conditions. The present study assesses the reasons for this rapid increase in organized convection by investigating dynamic and thermodynamic changes within future storms and their environments, in light of canonical existing theories for mid-latitude and tropical deep convection.</p><p> </p><p>In a future climate, more moisture originates from Arctic marine basins and relative humidity over continental Alaska is projected to increase due to sea ice loss, which is in sharp contrast to lower-latitude land regions that are expected to become drier. This increase in relative humidity favors the onset of organized convection through more unstable thermodynamic environments, increased low-level buoyancy, and weaker downdrafts.</p><p>Our confidence in these results is increased by showing that these changes can be analytically derived from basic physical laws. This suggests that organized thunderstorms might become more frequent in other pan-Arctic continental regions highlighting the uniqueness and vulnerability of these regions to climate change.</p>


2021 ◽  
Author(s):  
Basile Poujol ◽  
Andreas F. Prein ◽  
Maria J. Molina ◽  
Caroline Muller

AbstractConvective storms can cause economic damage and harm to humans by producing flash floods, lightning and severe weather. While organized convection is well studied in the tropics and mid-latitudes, few studies have focused on the physics and climate change impacts of pan-Arctic convective systems. Using a convection-permitting model we showed in a predecessor study that organized convective storm frequency might triple by the end of the century in Alaska assuming a high emission scenario. The present study assesses the reasons for this rapid increase in organized convection by investigating dynamic and thermodynamic changes within future storms and their environments, in light of canonical existing theories for mid-latitude and tropical deep convection. In a future climate, more moisture originates from Arctic marine basins increasing relative humidity over Alaska due to the loss of sea ice, which is in sharp contrast to lower-latitude land regions that are expected to become drier. This increase in relative humidity favors the onset of organized convection through more unstable thermodynamic environments, increased low-level buoyancy, and weaker downdrafts. Our confidence in these results is increased by showing that these changes can be analytically derived from basic physical laws. This suggests that organized thunderstorms might become more frequent in other pan-Arctic continental regions highlighting the uniqueness and vulnerability of these regions to climate change.


2020 ◽  
Vol 20 (12) ◽  
pp. 7489-7507
Author(s):  
Scott E. Giangrande ◽  
Dié Wang ◽  
David B. Mechem

Abstract. Radiosonde observations collected during the GoAmazon2014/5 campaign are analyzed to identify the primary thermodynamic regimes accompanying different modes of convection over the Amazon. This analysis identifies five thermodynamic regimes that are consistent with traditional Amazon calendar definitions of seasonal shifts, which include one wet, one transitional, and three dry season regimes based on a k-means cluster analysis. A multisensor ground-based approach is used to project associated bulk cloud and precipitation properties onto these regimes. This is done to assess the propensity for each regime to be associated with different characteristic cloud frequency, cloud types, and precipitation properties. Additional emphasis is given to those regimes that promote deep convective precipitation and organized convective systems. Overall, we find reduced cloud cover and precipitation rates to be associated with the three dry regimes and those with the highest convective inhibition. While approximately 15 % of the dataset is designated as organized convection, these events are predominantly contained within the transitional regime.


2020 ◽  
Author(s):  
Hyunju Jung ◽  
Ann Kristin Naumann ◽  
Bjorn Stevens

<p>Convective self-aggregation in radiative convective equilibrium has been studied due to its similarities to organized convection in the tropics. As tropical atmospheric phenomena are embedded in a large-scale flow, we impose a background wind to the model setup using convection-permitting simulation to analyze the interaction of convective self-aggregation with the background wind. The simulations show that when imposing a background wind, the convective cluster propagates in the direction of the imposed wind but slows down compared to what pure advection would suggest, and eventually becomes stationary. The dynamic process dominates slowing down the propagation speed of the cluster because the surface momentum flux acts as a drag on the near-surface wind, terminating the propagation. The thermodynamic process through the wind-induce surface feedback contributes to only 6% of the propagation speed of the convective cluster and is strongly modified by the dynamic process.</p>


2020 ◽  
Author(s):  
Chih-Chieh Chen ◽  
Changhai Liu ◽  
Mitch Moncrieff ◽  
Yaga Richter

<p>The importance of convective organization on the global circulation has been recognized for a long time, but parameterizations of the associated processes are missing in global climate models. Contemporary convective parameterizations commonly use a convective plume model (or a spectrum of plumes). This is perhaps appropriate for unorganized convection but the assumption of a gap between the small cumulus scale and the large-scale motion fails to recognize mesoscale dynamics manifested in mesoscale convective systems (MCSs) and multi-scale cloud systems associated with the MJO. Organized convection is abundant in environments featuring vertical wind shear, and significantly modulates the life cycle of moist convection, the transport of heat and momentum, and accounts for a large percentage of precipitation in the tropics. Mesoscale convective organization is typically associated with counter-gradient momentum transport, and distinct heating profiles between the convective and stratiform regions.</p><p>Moncrieff, Liu and Bogenschutz (2017) recently developed a dynamical based parameterization of organized moisture convection, referred to as multiscale coherent structure parameterization (MCSP), for global climate models. A prototype version of MCSP has been implemented in the NCAR Community Earth System Model (CESM) and the Energy Exascale Earth System Model (E3SM), positively affecting the distribution of tropical precipitation, convectively coupled tropical waves, and the Madden-Julian oscillation. We will show the further development of the MCSP and its impact on the simulation of mean precipitation and variability in the two global climate models.</p>


Sign in / Sign up

Export Citation Format

Share Document