scholarly journals Controls on the Diversity in Climate Model Projections of Early Summer Drying over Southern Africa

2019 ◽  
Vol 32 (12) ◽  
pp. 3707-3725 ◽  
Author(s):  
C. Munday ◽  
R. Washington

Abstract Ninety-five percent of climate models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) project early summer [October–December (OND)] rainfall declines over subtropical southern Africa by the end of the century, under all emissions forcing pathways. The intermodel consensus underlies the Intergovernmental Panel on Climate Change (IPCC) assessment that rainfall declines are “likely” and implies that significant climate change adaptation is needed. However, model consensus is not necessarily a good indicator of confidence, especially given that there is an order of magnitude difference in the scale of rainfall decline among models in OND (from <10 mm season−1 to ~100 mm season−1), and that the CMIP5 ensemble systematically overestimates present-day OND precipitation over subtropical southern Africa (in some models by a factor of 2). In this paper we investigate the uncertainty in the OND drying signal by evaluating the climate mechanisms that underlie the diversity in model rainfall projections. Models projecting the highest-magnitude drying simulate the largest increases in tropospheric stability over subtropical southern Africa associated with anomalous upper-level subsidence, reduced evaporation, and amplified surface temperature change. Intermodel differences in rainfall projections are in turn related to the large-scale adjustment of the tropical atmosphere to emissions forcing: models with the strongest relative warming of the northern tropical sea surface temperatures compared to the tropical mean warming simulate the largest rainfall declines. The models with extreme rainfall declines also tend to simulate large present-day biases in rainfall and in atmospheric stability, leading the authors to suggest that projections of high-magnitude drying require further critical attention.

2013 ◽  
Vol 26 (17) ◽  
pp. 6716-6732 ◽  
Author(s):  
Paulo Nobre ◽  
Leo S. P. Siqueira ◽  
Roberto A. F. de Almeida ◽  
Marta Malagutti ◽  
Emanuel Giarolla ◽  
...  

Abstract The response of the global climate system to atmospheric CO2 concentration increase in time is scrutinized employing the Brazilian Earth System Model Ocean–Atmosphere version 2.3 (BESM-OA2.3). Through the achievement of over 2000 yr of coupled model integrations in ensemble mode, it is shown that the model simulates the signal of recent changes of global climate trends, depicting a steady atmospheric and oceanic temperature increase and corresponding marine ice retreat. The model simulations encompass the time period from 1960 to 2105, following the phase 5 of the Coupled Model Intercomparison Project (CMIP5) protocol. Notwithstanding the accurate reproduction of large-scale ocean–atmosphere coupled phenomena, like the ENSO phenomena over the equatorial Pacific and the interhemispheric gradient mode over the tropical Atlantic, the BESM-OA2.3 coupled model shows systematic errors on sea surface temperature and precipitation that resemble those of other global coupled climate models. Yet, the simulations demonstrate the model’s potential to contribute to the international efforts on global climate change research, sparking interest in global climate change research within the Brazilian climate modeling community, constituting a building block of the Brazilian Framework for Global Climate Change Research.


2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2018 ◽  
Vol 99 (11) ◽  
pp. 2341-2359 ◽  
Author(s):  
M. J. Roberts ◽  
P. L. Vidale ◽  
C. Senior ◽  
H. T. Hewitt ◽  
C. Bates ◽  
...  

AbstractThe time scales of the Paris Climate Agreement indicate urgent action is required on climate policies over the next few decades, in order to avoid the worst risks posed by climate change. On these relatively short time scales the combined effect of climate variability and change are both key drivers of extreme events, with decadal time scales also important for infrastructure planning. Hence, in order to assess climate risk on such time scales, we require climate models to be able to represent key aspects of both internally driven climate variability and the response to changing forcings. In this paper we argue that we now have the modeling capability to address these requirements—specifically with global models having horizontal resolutions considerably enhanced from those typically used in previous Intergovernmental Panel on Climate Change (IPCC) and Coupled Model Intercomparison Project (CMIP) exercises. The improved representation of weather and climate processes in such models underpins our enhanced confidence in predictions and projections, as well as providing improved forcing to regional models, which are better able to represent local-scale extremes (such as convective precipitation). We choose the global water cycle as an illustrative example because it is governed by a chain of processes for which there is growing evidence of the benefits of higher resolution. At the same time it comprises key processes involved in many of the expected future climate extremes (e.g., flooding, drought, tropical and midlatitude storms).


2010 ◽  
Vol 23 (23) ◽  
pp. 6143-6152 ◽  
Author(s):  
Adam A. Scaife ◽  
Tim Woollings ◽  
Jeff Knight ◽  
Gill Martin ◽  
Tim Hinton

Abstract Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2018 ◽  
Vol 31 (18) ◽  
pp. 7533-7548 ◽  
Author(s):  
C. Munday ◽  
R. Washington

An important challenge for climate science is to understand the regional circulation and rainfall response to global warming. Unfortunately, the climate models used to project future changes struggle to represent present-day rainfall and circulation, especially at a regional scale. This is the case in southern Africa, where models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) overestimate summer rainfall by as much as 300% compared to observations and tend to underestimate rainfall in Madagascar and the southwest Indian Ocean. In this paper, we explore the climate processes associated with the rainfall bias, with the aim of assessing the reliability of the CMIP5 ensemble and highlighting important areas for model development. We find that the high precipitation rates in models that are wet over southern Africa are associated with an anomalous northeasterly moisture transport (~10–30 g kg−1 s−1) that penetrates across the high topography of Tanzania and Malawi and into subtropical southern Africa. This transport occurs in preference to a southeasterly recurvature toward Madagascar that is seen in drier models and reanalysis data. We demonstrate that topographically related model biases in low-level flow are important for explaining the intermodel spread in rainfall; wetter models have a reduced tendency to block the oncoming northeasterly flow compared to dry models. The differences in low-level flow among models are related to upstream wind speed and model representation of topography, both of which should be foci for model development.


2018 ◽  
Vol 99 (4) ◽  
pp. 791-803 ◽  
Author(s):  
John R. Lanzante ◽  
Keith W. Dixon ◽  
Mary Jo Nath ◽  
Carolyn E. Whitlock ◽  
Dennis Adams-Smith

AbstractStatistical downscaling (SD) is commonly used to provide information for the assessment of climate change impacts. Using as input the output from large-scale dynamical climate models and observation-based data products, SD aims to provide a finer grain of detail and to mitigate systematic biases. It is generally recognized as providing added value. However, one of the key assumptions of SD is that the relationships used to train the method during a historical period are unchanged in the future, in the face of climate change. The validity of this assumption is typically quite difficult to assess in the normal course of analysis, as observations of future climate are lacking. We approach this problem using a “perfect model” experimental design in which high-resolution dynamical climate model output is used as a surrogate for both past and future observations.We find that while SD in general adds considerable value, in certain well-defined circumstances it can produce highly erroneous results. Furthermore, the breakdown of SD in these contexts could not be foreshadowed during the typical course of evaluation based on only available historical data. We diagnose and explain the reasons for these failures in terms of physical, statistical, and methodological causes. These findings highlight the need for caution in the use of statistically downscaled products and the need for further research to consider other hitherto unknown pitfalls, perhaps utilizing more advanced perfect model designs than the one we have employed.


2012 ◽  
Vol 25 (12) ◽  
pp. 4097-4115 ◽  
Author(s):  
Shuguang Wang ◽  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The circulation response of the atmosphere to climate change–like thermal forcing is explored with a relatively simple, stratosphere-resolving general circulation model. The model is forced with highly idealized physics, but integrates the primitive equations at resolution comparable to comprehensive climate models. An imposed forcing mimics the warming induced by greenhouse gasses in the low-latitude upper troposphere. The forcing amplitude is progressively increased over a range comparable in magnitude to the warming projected by Intergovernmental Panel on Climate Change coupled climate model scenarios. For weak to moderate warming, the circulation response is remarkably similar to that found in comprehensive models: the Hadley cell widens and weakens, the tropospheric midlatitude jets shift poleward, and the Brewer–Dobson circulation (BDC) increases. However, when the warming of the tropical upper troposphere exceeds a critical threshold, ~5 K, an abrupt change of the atmospheric circulation is observed. In the troposphere the extratropical eddy-driven jet jumps poleward nearly 10°. In the stratosphere the polar vortex intensifies and the BDC weakens as the intraseasonal coupling between the troposphere and the stratosphere shuts down. The key result of this study is that an abrupt climate transition can be effected by changes in atmospheric dynamics alone, without need for the strong nonlinearities typically associated with physical parameterizations. It is verified that the abrupt climate shift reported here is not an artifact of the model’s resolution or numerics.


2013 ◽  
Vol 26 (10) ◽  
pp. 3394-3414 ◽  
Author(s):  
C. Adam Schlosser ◽  
Xiang Gao ◽  
Kenneth Strzepek ◽  
Andrei Sokolov ◽  
Chris E. Forest ◽  
...  

Abstract The growing need for risk-based assessments of impacts and adaptation to climate change calls for increased capability in climate projections: specifically, the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Herein, the authors present a technique that extends the latitudinal projections of the 2D atmospheric model of the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM) by applying longitudinally resolved patterns from observations, and from climate model projections archived from exercises carried out for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The method maps the IGSM zonal means across longitude using a set of transformation coefficients, and this approach is demonstrated in application to near-surface air temperature and precipitation, for which high-quality observational datasets and model simulations of climate change are available. The current climatology of the transformation coefficients is observationally based. To estimate how these coefficients may alter with climate, the authors characterize the climate models’ spatial responses, relative to their zonal mean, from transient increases in trace-gas concentrations and then normalize these responses against their corresponding transient global temperature responses. This procedure allows for the construction of metaensembles of regional climate outcomes, combining the ensembles of the MIT IGSM—which produce global and latitudinal climate projections, with uncertainty, under different global climate policy scenarios—with regionally resolved patterns from the archived IPCC climate model projections. This hybridization of the climate model longitudinal projections with the global and latitudinal patterns projected by the IGSM can, in principle, be applied to any given state or flux variable that has the sufficient observational and model-based information.


Sign in / Sign up

Export Citation Format

Share Document