scholarly journals Boreal Winter Surface Air Temperature Responses to Large Tropical Volcanic Eruptions in CMIP5 Models

2020 ◽  
Vol 33 (6) ◽  
pp. 2407-2426 ◽  
Author(s):  
Chen Xing ◽  
Fei Liu ◽  
Bin Wang ◽  
Deliang Chen ◽  
Jian Liu ◽  
...  

AbstractWe analyzed global surface air temperature (SAT) responses to five major tropical volcanic eruptions from 1870 to 2005 using outputs from 97 historical and 58 Atmospheric Model Intercomparison Project (AMIP) runs that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In observations, there was a 3-yr global cooling trend after the eruption due to reduced shortwave radiation, and a 0.1-K average global-mean SAT recovery, consisting of El Niño–like tropical warming and Eurasian warming, occurred in the first posteruption boreal winter. This global cooling pause was simulated by the multimodel ensemble (MME) mean of the AMIP runs, but not the MME of the historical runs due to the absence of El Niño–like warming. In the historical runs, simulation of El Niño–like warming was influenced by the initial ocean condition (IOC). An El Niño–like response was simulated when the IOC was not in an El Niño state, but the warming was much weaker compared to observations. The Eurasian warming response, despite being reproduced by the MME mean of both AMIP and historical runs, was not as strong as in observations. This is because the simulated positive polar vortex response, an important stratospheric forcing for Eurasian warming, was very weak, which suggests that the CMIP5 models, and even the Climate Forecast System model, underestimate volcanic effects on the stratosphere. Most of the coupled models failed to replicate both the El Niño and the enhanced polar vortex responses, indicating an urgent need for improving air–sea interaction and stratospheric processes in these models.

2021 ◽  
Vol 34 (2) ◽  
pp. 449-464
Author(s):  
Samantha Stevenson ◽  
Andrew T. Wittenberg ◽  
John Fasullo ◽  
Sloan Coats ◽  
Bette Otto-Bliesner

AbstractThe majority of future projections in the Coupled Model Intercomparison Project (CMIP5) show more frequent exceedances of the 5 mm day−1 rainfall threshold in the eastern equatorial Pacific rainfall during El Niño, previously described in the literature as an increase in “extreme El Niño events”; however, these exceedance frequencies vary widely across models, and in some projections actually decrease. Here we combine single-model large ensemble simulations with phase 5 of the Coupled Model Intercomparison Project (CMIP5) to diagnose the mechanisms for these differences. The sensitivity of precipitation to local SST anomalies increases consistently across CMIP-class models, tending to amplify extreme El Niño occurrence; however, changes to the magnitude of ENSO-related SST variability can drastically influence the results, indicating that understanding changes to SST variability remains imperative. Future El Niño rainfall intensifies most in models with 1) larger historical cold SST biases in the central equatorial Pacific, which inhibit future increases in local convective cloud shading, enabling more local warming; and 2) smaller historical warm SST biases in the far eastern equatorial Pacific, which enhance future reductions in stratus cloud, enabling more local warming. These competing mechanisms complicate efforts to determine whether CMIP5 models under- or overestimate the future impacts of climate change on El Niño rainfall and its global impacts. However, the relation between future projections and historical biases suggests the possibility of using observable metrics as “emergent constraints” on future extreme El Niño, and a proof of concept using SSTA variance, precipitation sensitivity to SST, and regional SST trends is presented.


2016 ◽  
Vol 29 (4) ◽  
pp. 1325-1338 ◽  
Author(s):  
A. Meyer ◽  
D. Folini ◽  
U. Lohmann ◽  
T. Peter

Abstract Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.


2013 ◽  
Vol 26 (14) ◽  
pp. 4947-4961 ◽  
Author(s):  
Lin Chen ◽  
Yongqiang Yu ◽  
De-Zheng Sun

Abstract Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.


2016 ◽  
Vol 49 (1-2) ◽  
pp. 263-278 ◽  
Author(s):  
Jinggao Hu ◽  
Tim Li ◽  
Haiming Xu ◽  
Shuangyan Yang

2016 ◽  
Author(s):  
Fabian Wunderlich ◽  
Daniel M. Mitchell

Abstract. In light of the range in presently available observational, reanalysis and model data, we revisit the surface climate response to large tropical volcanic eruptions from the end of the 19th century until present. We focus on the dynamical driven response of the North Atlantic Oscillation (NAO) and the radiative driven tropical temperature response. Using ten different reanalysis products and the Hadley Centre Sea Level Pressure observational dataset (HadSLP2) we confirm a positive tendency in the phase of the NAO during boreal winters following large volcanic eruptions, although conclude that it is not as clear cut as the current literature suggests. Especially during poorly observed periods where higher uncertainties produce a less robust signal. The phase of the NAO leads to a dynamically driven warm anomaly over Northern Europe. At the same time, there is a general cooling of the tropical surface temperatures due to the reduced incoming shortwave radiation. The magnitude of this cooling is uncertain and is hard to isolate using observational data alone (mainly due to the presence of El Niño). Therefore we use regression-based detection and attribution techniques to investigate the volcanic temperature signal with eight Coupled Model Inter-comparison Project phase 5 (CMIP5) models. In all models the volcanic signal can be detected but a general overestimation of the surface cooling is found. The enhanced surface cooling in models is likely driven, in part, by an over absorption of SW radiation in the lower stratosphere, but aliasing with El Niño events is also an issue and further process based studies are necessary to confirm these.


2005 ◽  
Vol 18 (14) ◽  
pp. 2617-2627 ◽  
Author(s):  
Soon-Il An ◽  
Yoo-Geun Ham ◽  
Jong-Seong Kug ◽  
Fei-Fei Jin ◽  
In-Sik Kang

Abstract The El Niño–La Niña asymmetry was estimated in the 10 different models participating in the Coupled Model Intercomparison Project (CMIP). Large differences in the “asymmetricity” (a variance-weighted skewness) of SST anomalies are found between models and observations. Most of the coupled models underestimate the nonlinearity and only a few exhibit the positively skewed SST anomalies over the tropical eastern Pacific as seen in the observation. A significant association between the nonlinear dynamical heating (NDH) and asymmetricity in the model–ENSO indices is found, inferring that asymmetricity is caused mainly by NDH. Among the 10 models, one coupled GCM simulates the asymmetricity of the tropical SST realistically, and its simulation manifests a strong relationship between the intensity and the propagating feature of ENSO—the strong ENSO events moving eastward and the weak ENSO events moving westward—which is consistent with the observation. Interestingly, the coupled general circulation models, of which the ocean model is based on the one used by Bryan and Cox, commonly showed the reasonably positive skewed ENSO. The decadal changes in the skewness, variance, and NDH of the model-simulated ENSO are also observed. These three quantities over the tropical eastern Pacific are significantly correlated to each other, indicating that the decadal change in ENSO variability is closely related to the nonlinear process of ENSO. It is also found that these decadal changes in ENSO variability are related to the decadal variation in the tropical Pacific SST, implying that the decadal change in the El Niño–La Niña asymmetry could manifest itself as a rectified change in the background state.


2019 ◽  
Vol 34 (1) ◽  
pp. 43-67
Author(s):  
Juarez Viegas ◽  
Rita Valéria Andreoli ◽  
Mary Toshie Kayano ◽  
Luiz Antonio Candido ◽  
Rodrigo Augusto Ferreira de Souza ◽  
...  

Resumo Estudos recentes têm apontado para a existência de dois tipos de eventos de El Niño (EN): EN do Pacífico oriental ou Canônico (EP, sigla em inglês) e EN do Pacífico Central ou Modoki (CP, sigla em inglês). Neste estudo, foram utilizados dados observados e de três modelos do Coupled Model Intercomparison Project phase 5 (CMIP5) para avaliar o impacto dos dois tipos de EN na precipitação da América do Sul desde o trimestre de Junho-Agosto do ano inicial do evento até Março-Maio do ano seguinte. O modelo do Centre National de Recherches Météorologiques (CNRM-CM5) apresentou o melhor desempenho para reproduzir os padrões anômalos observados de TSM para os tipos de EN CP e EP. O padrão anômalo da precipitação observada associado a eventos EN foi mais marcante durante o verão austral. No caso do EN EP, tal padrão caracterizou-se por precipitação acima (abaixo) da normal no sudeste (norte/noroeste) da América do Sul. Este padrão foi reproduzido pelos modelos CNRM-CM5 e Hadley Centre Global Environmental Model (HadGEM2-ES). O Max Plank Institute Earth System model (MPI-ESM-LR) reproduziu a redução de chuva no norte, porém não reproduziu o aumento anômalo no sudeste e redução no noroeste do continente. No caso do EN CP, o impacto observado nas chuvas da América do Sul durante o verão caracterizou-se por escassez (excesso) no norte/noroeste (sudeste). Este padrão foi reproduzido pelos modelos, entretanto, os modelos HadGEM2-ES e MPI-ESM-LR mostraram índices pluviométricos no nordeste do Brasil menores do que os observados. As diferenças na representação dos padrões de teleconexões em resposta ao EN explicam as diferenças entre os padrões simulados.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


Sign in / Sign up

Export Citation Format

Share Document