Joint Boost to Super El Niño from the Indian and Atlantic Oceans

2021 ◽  
pp. 1-54
Author(s):  
Jia-Zhen Wang ◽  
Chunzai Wang

AbstractSuper El Niño has been a research focus since the first event occurred. Based on observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean Dipole (IOD) in autumn which is called Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds over the Pacific (U), augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño3.4 model, with a rise in the total explained variances by 10–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately, 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific will greatly improve super El Niño prediction.

2014 ◽  
Vol 71 (9) ◽  
pp. 3454-3464 ◽  
Author(s):  
Jian Ma ◽  
Jin-Yi Yu

Abstract This study analyzes representative concentration pathway 4.5 projections by 18 models from phase 5 of the Coupled Model Intercomparison Project to show that surface warming patterns in the equatorial Pacific during the twenty-first century (centennial warming) are influenced by the relative strengths of the Walker and Hadley circulations. The stronger the Hadley (Walker) circulation is, the greater the surface warming in the central Pacific (CP) [eastern Pacific (EP)]. The EP warming is associated with the Bjerknes feedback, while the CP warming is associated with the wind–evaporation–sea surface temperature feedback. This atmospheric circulation influence on the centennial warming is similar to that found for the EP and CP El Niño. This suggests a methodology to constrain the estimate of the projected surface warming patterns in the equatorial Pacific using recent El Niño activity. The constraint indicates that the “most likely” centennial warming patterns have a maximum in the EP and are 39% weaker than the warming projected by the 18-model mean. The most-likely projection also shows alternating stronger and weaker warming in the subtropical North Pacific, which is not predicted by the 18-model mean projection. Nevertheless, the two projections agree on the minimum warming in the southeastern subtropical Pacific.


2021 ◽  
Vol 34 (2) ◽  
pp. 449-464
Author(s):  
Samantha Stevenson ◽  
Andrew T. Wittenberg ◽  
John Fasullo ◽  
Sloan Coats ◽  
Bette Otto-Bliesner

AbstractThe majority of future projections in the Coupled Model Intercomparison Project (CMIP5) show more frequent exceedances of the 5 mm day−1 rainfall threshold in the eastern equatorial Pacific rainfall during El Niño, previously described in the literature as an increase in “extreme El Niño events”; however, these exceedance frequencies vary widely across models, and in some projections actually decrease. Here we combine single-model large ensemble simulations with phase 5 of the Coupled Model Intercomparison Project (CMIP5) to diagnose the mechanisms for these differences. The sensitivity of precipitation to local SST anomalies increases consistently across CMIP-class models, tending to amplify extreme El Niño occurrence; however, changes to the magnitude of ENSO-related SST variability can drastically influence the results, indicating that understanding changes to SST variability remains imperative. Future El Niño rainfall intensifies most in models with 1) larger historical cold SST biases in the central equatorial Pacific, which inhibit future increases in local convective cloud shading, enabling more local warming; and 2) smaller historical warm SST biases in the far eastern equatorial Pacific, which enhance future reductions in stratus cloud, enabling more local warming. These competing mechanisms complicate efforts to determine whether CMIP5 models under- or overestimate the future impacts of climate change on El Niño rainfall and its global impacts. However, the relation between future projections and historical biases suggests the possibility of using observable metrics as “emergent constraints” on future extreme El Niño, and a proof of concept using SSTA variance, precipitation sensitivity to SST, and regional SST trends is presented.


2013 ◽  
Vol 26 (14) ◽  
pp. 4947-4961 ◽  
Author(s):  
Lin Chen ◽  
Yongqiang Yu ◽  
De-Zheng Sun

Abstract Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.


2012 ◽  
Vol 25 (20) ◽  
pp. 6942-6957 ◽  
Author(s):  
Jong-Seong Kug ◽  
Yoo-Geun Ham

Abstract Observational studies hypothesized that Indian Ocean (IO) feedback plays a role in leading to a fast transition of El Niño. When El Niño accompanies IO warming, IO warming induces the equatorial easterlies over the western Pacific (WP), leading to a rapid termination of El Niño via an oceanic adjust process. In this study, this IO feedback is reinvestigated using the Coupled Model Intercomparison Project phase 3 (CMIP3) coupled GCM simulations. It is found that most of the climate models mimic this IO feedback reasonably, supporting the observational hypothesis. However, most climate models tend to underestimate the strength of the IO feedback, which means the phase transition of ENSO due to the IO feedback is less effective than the observed one. Furthermore, there is great intermodel diversity in simulating the strength of the IO feedback. It is shown that the strength of the IO feedback is related to the precipitation responses to El Niño and IO SST forcings over the warm-pool regions. Moreover, the authors suggest that the distribution of climatological precipitation is one important component in controlling the strength of the IO feedback.


2014 ◽  
Vol 27 (22) ◽  
pp. 8357-8371 ◽  
Author(s):  
Angeline G. Pendergrass ◽  
Dennis L. Hartmann

Abstract The frequency and intensity of rainfall determine its character and may change with climate. A methodology for characterizing the frequency and amount of rainfall as functions of the rain rate is developed. Two modes of response are defined, one in which the distribution of rainfall increases in equal fraction at all rain rates and one in which the rainfall shifts to higher or lower rain rates without a change in mean rainfall. This description of change is applied to the tropical distribution of daily rainfall over ENSO phases in models and observations. The description fits observations and most models well, although some models also have an extreme mode in which the frequency increases at extremely high rain rates. The multimodel mean from phase 5 of the Coupled Model Intercomparison Project (CMIP5) agrees with observations in showing a very large shift of 14%–15% K−1, indicating large increases in the heaviest rain rates associated with El Niño. Models with an extreme mode response to global warming do not agree as well with observations of the rainfall response to El Niño.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sukhwinder Kaur ◽  
Prashant Kumar ◽  
Evan Weller ◽  
Ian R. Young

AbstractThe influence of increasing sea surface temperatures (SSTs), in response to greenhouse warming, on wave power (WP) remains uncertain. Here, seasonal relationships between SST anomalies and mean and extreme WP over the Indo-Pacific Ocean are examined. Overall, seasonal WP has significantly increased over much of the Pacific, Indian, and Southern Ocean by 1.21–3.10 kW/m dec−1 over 1979–2019. Contributions from wave characteristics, namely significant wave height (SWH) and peak wave period (PWP), to changes in WP show that SWH contributes most in extra-tropical regions, and PWP most in tropical regions. Further, seasonal relationships between SST anomalies and WP indicate that increases in WP are also seen during strong El Niño years in December–February, and in-phase combinations of El Niño and positive Indian Ocean Dipole (IOD) events during June–August and September–November. Results highlight both long-term increasing SSTs and climate variability roles for inducing large-scale seasonal WP changes throughout the Indo-Pacific.


2005 ◽  
Vol 18 (14) ◽  
pp. 2617-2627 ◽  
Author(s):  
Soon-Il An ◽  
Yoo-Geun Ham ◽  
Jong-Seong Kug ◽  
Fei-Fei Jin ◽  
In-Sik Kang

Abstract The El Niño–La Niña asymmetry was estimated in the 10 different models participating in the Coupled Model Intercomparison Project (CMIP). Large differences in the “asymmetricity” (a variance-weighted skewness) of SST anomalies are found between models and observations. Most of the coupled models underestimate the nonlinearity and only a few exhibit the positively skewed SST anomalies over the tropical eastern Pacific as seen in the observation. A significant association between the nonlinear dynamical heating (NDH) and asymmetricity in the model–ENSO indices is found, inferring that asymmetricity is caused mainly by NDH. Among the 10 models, one coupled GCM simulates the asymmetricity of the tropical SST realistically, and its simulation manifests a strong relationship between the intensity and the propagating feature of ENSO—the strong ENSO events moving eastward and the weak ENSO events moving westward—which is consistent with the observation. Interestingly, the coupled general circulation models, of which the ocean model is based on the one used by Bryan and Cox, commonly showed the reasonably positive skewed ENSO. The decadal changes in the skewness, variance, and NDH of the model-simulated ENSO are also observed. These three quantities over the tropical eastern Pacific are significantly correlated to each other, indicating that the decadal change in ENSO variability is closely related to the nonlinear process of ENSO. It is also found that these decadal changes in ENSO variability are related to the decadal variation in the tropical Pacific SST, implying that the decadal change in the El Niño–La Niña asymmetry could manifest itself as a rectified change in the background state.


2017 ◽  
Vol 114 (7) ◽  
pp. 1468-1473 ◽  
Author(s):  
Nan Chen ◽  
Andrew J. Majda

The El Niño Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. A simple modeling framework is developed here that automatically captures the statistical diversity of ENSO. First, a stochastic parameterization of the wind bursts including both westerly and easterly winds is coupled to a simple ocean–atmosphere model that is otherwise deterministic, linear, and stable. Second, a simple nonlinear zonal advection with no ad hoc parameterization of the background sea-surface temperature (SST) gradient and a mean easterly trade wind anomaly representing the multidecadal acceleration of the trade wind are both incorporated into the coupled model that enables anomalous warm SST in the central Pacific. Then a three-state stochastic Markov jump process is used to drive the wind burst activity that depends on the strength of the western Pacific warm pool in a simple and effective fashion. It allows the coupled model to simulate the quasi-regular moderate traditional El Niño, the super El Niño, and the central Pacific (CP) El Niño as well as the La Niña with realistic features. In addition to the anomalous SST, the Walker circulation anomalies at different ENSO phases all resemble those in nature. In particular, the coupled model succeeds in reproducing the observed episode during the 1990s, where a series of 5-y CP El Niños is followed by a super El Niño and then a La Niña. Importantly, both the variance and the non-Gaussian statistical features in different Niño regions spanning from the western to the eastern Pacific are captured by the coupled model.


2019 ◽  
Vol 34 (1) ◽  
pp. 43-67
Author(s):  
Juarez Viegas ◽  
Rita Valéria Andreoli ◽  
Mary Toshie Kayano ◽  
Luiz Antonio Candido ◽  
Rodrigo Augusto Ferreira de Souza ◽  
...  

Resumo Estudos recentes têm apontado para a existência de dois tipos de eventos de El Niño (EN): EN do Pacífico oriental ou Canônico (EP, sigla em inglês) e EN do Pacífico Central ou Modoki (CP, sigla em inglês). Neste estudo, foram utilizados dados observados e de três modelos do Coupled Model Intercomparison Project phase 5 (CMIP5) para avaliar o impacto dos dois tipos de EN na precipitação da América do Sul desde o trimestre de Junho-Agosto do ano inicial do evento até Março-Maio do ano seguinte. O modelo do Centre National de Recherches Météorologiques (CNRM-CM5) apresentou o melhor desempenho para reproduzir os padrões anômalos observados de TSM para os tipos de EN CP e EP. O padrão anômalo da precipitação observada associado a eventos EN foi mais marcante durante o verão austral. No caso do EN EP, tal padrão caracterizou-se por precipitação acima (abaixo) da normal no sudeste (norte/noroeste) da América do Sul. Este padrão foi reproduzido pelos modelos CNRM-CM5 e Hadley Centre Global Environmental Model (HadGEM2-ES). O Max Plank Institute Earth System model (MPI-ESM-LR) reproduziu a redução de chuva no norte, porém não reproduziu o aumento anômalo no sudeste e redução no noroeste do continente. No caso do EN CP, o impacto observado nas chuvas da América do Sul durante o verão caracterizou-se por escassez (excesso) no norte/noroeste (sudeste). Este padrão foi reproduzido pelos modelos, entretanto, os modelos HadGEM2-ES e MPI-ESM-LR mostraram índices pluviométricos no nordeste do Brasil menores do que os observados. As diferenças na representação dos padrões de teleconexões em resposta ao EN explicam as diferenças entre os padrões simulados.


Sign in / Sign up

Export Citation Format

Share Document