scholarly journals Linking Centennial Surface Warming Patterns in the Equatorial Pacific to the Relative Strengths of the Walker and Hadley Circulations

2014 ◽  
Vol 71 (9) ◽  
pp. 3454-3464 ◽  
Author(s):  
Jian Ma ◽  
Jin-Yi Yu

Abstract This study analyzes representative concentration pathway 4.5 projections by 18 models from phase 5 of the Coupled Model Intercomparison Project to show that surface warming patterns in the equatorial Pacific during the twenty-first century (centennial warming) are influenced by the relative strengths of the Walker and Hadley circulations. The stronger the Hadley (Walker) circulation is, the greater the surface warming in the central Pacific (CP) [eastern Pacific (EP)]. The EP warming is associated with the Bjerknes feedback, while the CP warming is associated with the wind–evaporation–sea surface temperature feedback. This atmospheric circulation influence on the centennial warming is similar to that found for the EP and CP El Niño. This suggests a methodology to constrain the estimate of the projected surface warming patterns in the equatorial Pacific using recent El Niño activity. The constraint indicates that the “most likely” centennial warming patterns have a maximum in the EP and are 39% weaker than the warming projected by the 18-model mean. The most-likely projection also shows alternating stronger and weaker warming in the subtropical North Pacific, which is not predicted by the 18-model mean projection. Nevertheless, the two projections agree on the minimum warming in the southeastern subtropical Pacific.

2021 ◽  
Vol 34 (2) ◽  
pp. 449-464
Author(s):  
Samantha Stevenson ◽  
Andrew T. Wittenberg ◽  
John Fasullo ◽  
Sloan Coats ◽  
Bette Otto-Bliesner

AbstractThe majority of future projections in the Coupled Model Intercomparison Project (CMIP5) show more frequent exceedances of the 5 mm day−1 rainfall threshold in the eastern equatorial Pacific rainfall during El Niño, previously described in the literature as an increase in “extreme El Niño events”; however, these exceedance frequencies vary widely across models, and in some projections actually decrease. Here we combine single-model large ensemble simulations with phase 5 of the Coupled Model Intercomparison Project (CMIP5) to diagnose the mechanisms for these differences. The sensitivity of precipitation to local SST anomalies increases consistently across CMIP-class models, tending to amplify extreme El Niño occurrence; however, changes to the magnitude of ENSO-related SST variability can drastically influence the results, indicating that understanding changes to SST variability remains imperative. Future El Niño rainfall intensifies most in models with 1) larger historical cold SST biases in the central equatorial Pacific, which inhibit future increases in local convective cloud shading, enabling more local warming; and 2) smaller historical warm SST biases in the far eastern equatorial Pacific, which enhance future reductions in stratus cloud, enabling more local warming. These competing mechanisms complicate efforts to determine whether CMIP5 models under- or overestimate the future impacts of climate change on El Niño rainfall and its global impacts. However, the relation between future projections and historical biases suggests the possibility of using observable metrics as “emergent constraints” on future extreme El Niño, and a proof of concept using SSTA variance, precipitation sensitivity to SST, and regional SST trends is presented.


2016 ◽  
Vol 113 (42) ◽  
pp. 11732-11737 ◽  
Author(s):  
Nan Chen ◽  
Andrew J. Majda

The Central Pacific El Niño (CP El Niño) has been frequently observed in recent decades. The phenomenon is characterized by an anomalous warm sea surface temperature (SST) confined to the central Pacific and has different teleconnections from the traditional El Niño. Here, simple models are developed and shown to capture the key mechanisms of the CP El Niño. The starting model involves coupled atmosphere–ocean processes that are deterministic, linear, and stable. Then, systematic strategies are developed for incorporating several major mechanisms of the CP El Niño into the coupled system. First, simple nonlinear zonal advection with no ad hoc parameterization of the background SST gradient is introduced that creates coupled nonlinear advective modes of the SST. Secondly, due to the recent multidecadal strengthening of the easterly trade wind, a stochastic parameterization of the wind bursts including a mean easterly trade wind anomaly is coupled to the simple atmosphere–ocean processes. Effective stochastic noise in the wind burst model facilitates the intermittent occurrence of the CP El Niño with realistic amplitude and duration. In addition to the anomalous warm SST in the central Pacific, other major features of the CP El Niño such as the rising branch of the anomalous Walker circulation being shifted to the central Pacific and the eastern Pacific cooling with a shallow thermocline are all captured by this simple coupled model. Importantly, the coupled model succeeds in simulating a series of CP El Niño that lasts for 5 y, which resembles the two CP El Niño episodes during 1990–1995 and 2002–2006.


2021 ◽  
pp. 1-54
Author(s):  
Jia-Zhen Wang ◽  
Chunzai Wang

AbstractSuper El Niño has been a research focus since the first event occurred. Based on observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean Dipole (IOD) in autumn which is called Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds over the Pacific (U), augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño3.4 model, with a rise in the total explained variances by 10–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately, 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific will greatly improve super El Niño prediction.


2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


Author(s):  
Swadhin Behera ◽  
Toshio Yamagata

The El Niño Modoki/La Niña Modoki (ENSO Modoki) is a newly acknowledged face of ocean-atmosphere coupled variability in the tropical Pacific Ocean. The oceanic and atmospheric conditions associated with the El Niño Modoki are different from that of canonical El Niño, which is extensively studied for its dynamics and worldwide impacts. A typical El Niño event is marked by a warm anomaly of sea surface temperature (SST) in the equatorial eastern Pacific. Because of the associated changes in the surface winds and the weakening of coastal upwelling, the coasts of South America suffer from widespread fish mortality during the event. Quite opposite of this characteristic change in the ocean condition, cold SST anomalies prevail in the eastern equatorial Pacific during the El Niño Modoki events, but with the warm anomalies intensified in the central Pacific. The boreal winter condition of 2004 is a typical example of such an event, when a tripole pattern is noticed in the SST anomalies; warm central Pacific flanked by cold eastern and western regions. The SST anomalies are coupled to a double cell in anomalous Walker circulation with rising motion in the central parts and sinking motion on both sides of the basin. This is again a different feature compared to the well-known single-cell anomalous Walker circulation during El Niños. La Niña Modoki is the opposite phase of the El Niño Modoki, when a cold central Pacific is flanked by warm anomalies on both sides.The Modoki events are seen to peak in both boreal summer and winter and hence are not seasonally phase-locked to a single seasonal cycle like El Niño/La Niña events. Because of this distinction in the seasonality, the teleconnection arising from these events will vary between the seasons as teleconnection path will vary depending on the prevailing seasonal mean conditions in the atmosphere. Moreover, the Modoki El Niño/La Niña impacts over regions such as the western coast of the United States, the Far East including Japan, Australia, and southern Africa, etc., are opposite to those of the canonical El Niño/La Niña. For example, the western coasts of the United States suffer from severe droughts during El Niño Modoki, whereas those regions are quite wet during El Niño. The influences of Modoki events are also seen in tropical cyclogenesis, stratosphere warming of the Southern Hemisphere, ocean primary productivity, river discharges, sea level variations, etc. A remarkable feature associated with Modoki events is the decadal flattening of the equatorial thermocline and weakening of zonal thermal gradient. The associated ocean-atmosphere conditions have caused frequent and persistent developments of Modoki events in recent decades.


2019 ◽  
Vol 32 (19) ◽  
pp. 6423-6443 ◽  
Author(s):  
Tao Lian ◽  
Jun Ying ◽  
Hong-Li Ren ◽  
Chan Zhang ◽  
Ting Liu ◽  
...  

AbstractNumerous studies have investigated the role of El Niño–Southern Oscillation (ENSO) in modulating the activity of tropical cyclones (TCs) in the western Pacific on interannual time scales, but the effects of TCs on ENSO are less discussed. Some studies have found that TCs sharply increase surface westerly anomalies over the equatorial western–central Pacific and maintain them there for a few days. Given the strong influence of equatorial surface westerly wind bursts on ENSO, as confirmed by much recent literature, the effects of TCs on ENSO may be much greater than previously expected. Using recently released observations and reanalysis datasets, it is found that the majority of near-equatorial TCs (simply TCs hereafter) are associated with strong westerly anomalies at the equator, and the number and longitude of TCs are significantly correlated with ENSO strength. When TC-related wind stresses are added into an intermediate coupled model, the simulated ENSO becomes more irregular, and both ENSO magnitude and skewness approach those of observations, as compared with simulations without TCs. Adding TCs into the model system does not break the linkage between the heat content anomaly and subsequent ENSO event in the model, which manifest the classic recharge–discharge ENSO dynamics. However, the influence of TCs on ENSO is so strong that ENSO magnitude and sometimes its final state—that is, either El Niño or La Niña—largely depend on the number and timing of TCs during the event year. Our findings suggest that TCs play a prominent role in ENSO dynamics, and their effects must be considered in ENSO forecast models.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 475 ◽  
Author(s):  
Hai Zhi ◽  
Rong-Hua Zhang ◽  
Pengfei Lin ◽  
Shiwei Shi

Ocean salinity variability provides a new way to study the evolution of the the El Niño-Southern Oscillation (ENSO). Comparisons between the salinity variation and related processes responsible for sea surface temperature anomaly (SSTA) were extensively examined for the two strong El Niño (EN) events in 1997/1998 and 2015/2016, and a special EN event in 2014/2015. The results show that the development of EN is significantly correlated with a sea surface salinity anomaly (SSSA) in the tropical western-central Pacific. In the spring of 1997 and 2015 with strong EN events, the western-central equatorial Pacific exhibited significant negative SSSA that propagated eastward to the west of the dateline. The negative SSSA induced increased barrier layer thickness (BLT) which enhanced sea surface temperature (SST) warming in the tropical central Pacific. In contrast, although a negative SSSA occurred during April of the 2014/2015 weak EN event in the western-central equatorial Pacific, this SSSA was mainly confined to between 160° E and 180° E without significant eastward movement, resulting in a weakened BLT thickening process and a weak modulation effect on SST. We also confirm that the surface forcing associated with fresh water flux (FWF: evaporation (E) minus precipitation (P)) plays a prominent role in the surface salinity tendency in the tropical Pacific during EN events. Moreover, the negative FWF anomaly leads a strong negative SSSA by two months. Compared with the two strong ENs, the early negative FWF anomaly in the weak 2014/2015 EN did not present distinct development and eastward propagation and weakened rapidly in the summer of 2015. We demonstrate that change in salinity can modulate the ENSO, and the variation of SSSA and associated physical processes in the tropical western-central Pacific and could be used as an indicator for predicting the development of ENSO.


2009 ◽  
Vol 22 (10) ◽  
pp. 2526-2540 ◽  
Author(s):  
Li Shi ◽  
Oscar Alves ◽  
Harry H. Hendon ◽  
Guomin Wang ◽  
David Anderson

Abstract The impact of stochastic intraseasonal variability on the onset of the 1997/98 El Niño was examined using a large ensemble of forecasts starting on 1 December 1996, produced using the Australian Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA) seasonal forecast coupled model. This coupled model has a reasonable simulation of El Niño and the Madden–Julian oscillation, so it provides an ideal framework for investigating the interaction between the MJO and El Niño. The experiment was designed so that the ensemble spread was simply a result of internal stochastic variability that is generated during the forecast. For the initial conditions used here, all forecasts led to warm El Niño–type conditions with the amplitude of the warming varying from 0.5° to 2.7°C in the Niño-3.4 region. All forecasts developed an MJO event during the first 4 months, indicating that perhaps the background state favored MJO development. However, the details of the MJOs that developed during December 1996–March 1997 had a significant impact on the subsequent strength of the El Niño event. In particular, the forecasts with the initial MJOs that extended farther into the central Pacific, on average, led to a stronger El Niño, with the westerly winds in the western Pacific associated with the MJO leading the development of SST and thermocline anomalies in the central and eastern Pacific. These results imply a limit to the accuracy with which the strength of El Niño can be predicted because the details of individual MJO events matter. To represent realistic uncertainty, coupled models should be able to represent the MJO, including its propagation into the central Pacific so that forecasts produce sufficient ensemble spread.


2013 ◽  
Vol 26 (14) ◽  
pp. 4947-4961 ◽  
Author(s):  
Lin Chen ◽  
Yongqiang Yu ◽  
De-Zheng Sun

Abstract Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.


Sign in / Sign up

Export Citation Format

Share Document