How do multi-scale interactions affect extreme precipitation in eastern central Asia?
AbstractThe variability of extreme precipitation in eastern Central Asia (ECA) during summer (June–August) and its corresponding mechanisms were investigated from a multi-scale synergy perspective. Extreme precipitation in ECA displayed a quasi-monopole increasing pattern with abrupt change since 2000/2001, which was likely dominated by increased high latitude North Atlantic SST anomalies as shown by diagnosed and numerical experiment results. Increased SST via adjusting the quasi-stationary wave train which related to the negative North Atlantic Oscillation and the East Atlantic/Western Russia pattern guided cyclonic anomaly in CA, deepened the Balkhash Lake trough and enhanced the moisture convergence in ECA. These anomalies also exhibited interdecadal enhancement after 2000. On the synoptic-scale, two synoptic transient wave trains correlated with extreme precipitation in ECA by amplifying the amplitude of the quasi-stationary waves and guiding transient eddies in ECA. The induced transient eddies and deepened Balkhash Lake trough strengthened positive meridional vorticity advection and local positive vorticity, which promoted ascending motions, and guided the southerly warm moisture in ECA especially after 2000. Meanwhile, additional meso-scale vortices were stimulated and strengthened near the Tianshan Mountain in front of the wave trough, which, together with the enhanced meridional circulation, further increased extreme precipitation in ECA.