Circulation Features Associated with the Record-Breaking Rainfall over South China in June 2017

2018 ◽  
Vol 31 (18) ◽  
pp. 7209-7224 ◽  
Author(s):  
Jianqi Sun ◽  
Jing Ming ◽  
Mengqi Zhang ◽  
Shui Yu

In June 2017, south China suffered from intense rainfall that broke the record spanning the previous 70 years. In this study, the large-scale circulations associated with the south China June rainfall are analyzed. The results show that the anomalous Pacific–Japan (PJ) pattern is a direct influence on south China June rainfall or East Asian early summer rainfall. In addition, the Australian high was the strongest in June 2017 during the past 70 years, which can increase the equatorward flow to northern Australia and activate convection over the Maritime Continent. Enhanced convection over the Maritime Continent can further enhance local meridional circulation along East Asia, engendering downward motion over the tropical western North Pacific and enhancing the western Pacific subtropical high (WPSH) and upward motion over south China, which increases the rainfall therein. In addition, a strong wave train pattern associated with North Atlantic air–sea interaction was observed in June 2017 at Northern Hemispheric mid- to high latitudes; it originated from the North Atlantic and propagated eastward to East Asia, resulting in an anomalous anticyclone over the Mongolian–Baikal Lake region. This anomalous anticyclone produced strong northerly winds over East Asia that encountered the southerly associated with the WPSH over south China, thereby favoring intense rainfall over the region. Case studies of June 2017 and climate research based on data during 1979–2017 and 1948–2017 indicate that the extremities of the atmospheric circulation over south Europe and Australian high and their coupling with the PJ pattern could be responsible for the record-breaking south China rainfall in June 2017.

2020 ◽  
Author(s):  
Ke Xu

<p>    The large-scale circulation anomalies associated with extreme heat (EH) in South Korea and southern–central Japan are examined using data during the time period 1979–2016. Statistical analysis indicates that EH days in these two regions are concentrated in July and August and tend to occur simultaneously. These EH days are therefore combined to explore the physical mechanisms leading to their occurrence. The composite results indicate that the anomalous atmospheric warming during EH days is dominantly caused by a significant subsidence anomaly, which is associated with a deep anomalous anticyclone over East Asia. Further investigation of the evolution of circulation anomalies suggests that the anomalous anticyclone over East Asia related to EH is primarily initiated by wave trains originating from upstream regions, which propagate eastward along the Asian westerly jet in the upper troposphere. These wave trains can be categorized into two types that are characterized by the precursor anticyclonic and cyclonic anomalies, respectively, over central Asia. The distinction between these two types of wave train can be explained by the wavenumbers of the Rossby waves, which are modulated by both the intensity and the shape of the Asian westerly jet as the background basic flow.</p>


2011 ◽  
Vol 68 (5) ◽  
pp. 954-963 ◽  
Author(s):  
Tim Woollings ◽  
Joaquim G. Pinto ◽  
João A. Santos

Abstract The development of a particular wintertime atmospheric circulation regime over the North Atlantic, comprising a northward shift of the North Atlantic eddy-driven jet stream and an associated strong and persistent ridge in the subtropics, is investigated. Several different methods of analysis are combined to describe the temporal evolution of the events and relate it to shifts in the phase of the North Atlantic Oscillation and East Atlantic pattern. First, the authors identify a close relationship between northward shifts of the eddy-driven jet, the establishment and maintenance of strong and persistent ridges in the subtropics, and the occurrence of upper-tropospheric anticyclonic Rossby wave breaking over Iberia. Clear tropospheric precursors are evident prior to the development of the regime, suggesting a preconditioning of the Atlantic jet stream and an upstream influence via a large-scale Rossby wave train from the North Pacific. Transient (2–6 days) eddy forcing plays a dual role, contributing to both the initiation and then the maintenance of the circulation anomalies. During the regime there is enhanced occurrence of anticyclonic Rossby wave breaking, which may be described as low-latitude blocking-like events over the southeastern North Atlantic. A strong ridge is already established at the time of wave-breaking onset, suggesting that the role of wave-breaking events is to amplify the circulation anomalies rather than to initiate them. Wave breaking also seems to enhance the persistence, since it is unlikely that a persistent ridge event occurs without being also accompanied by wave breaking.


2018 ◽  
Vol 146 (8) ◽  
pp. 2559-2577 ◽  
Author(s):  
N. Vigaud ◽  
A.W. Robertson ◽  
M. K. Tippett

Abstract Four recurrent weather regimes are identified over North America from October to March through a k-means clustering applied to MERRA daily 500-hPa geopotential heights over the 1982–2014 period. Three regimes resemble Rossby wave train patterns with some baroclinicity, while one is related to an NAO-like meridional pressure gradient between eastern North America and western regions of the North Atlantic. All regimes are associated with distinct rainfall and surface temperature anomalies over North America. The four-cluster partition is well reproduced by ECMWF week-1 reforecasts over the 1995–2014 period in terms of spatial structures, daily regime occurrences, and seasonal regime counts. The skill in forecasting daily regime sequences and weekly regime counts is largely limited to 2 weeks. However, skill relationships with the MJO, ENSO, and SST variability in the Atlantic and Indian Oceans suggest further potential for subseasonal predictability based on wintertime large-scale weather regimes.


2015 ◽  
Vol 15 (9) ◽  
pp. 2069-2077 ◽  
Author(s):  
D. Burić ◽  
J. Luković ◽  
B. Bajat ◽  
M. Kilibarda ◽  
N. Živković

Abstract. More intense rainfall may cause a range of negative impacts upon society and the environment. In this study we analysed trends in extreme ETCCDI (Expert Team on Climate Change Detection and Indices) rainfall indices in Montenegro for the period between 1951 and 2010. Montenegro has been poorly studied in terms of rainfall extremes, yet it contains the wettest Mediterranean region known as Krivošije. Several indices of precipitation extremes were assessed including the number of dry days and rainfall totals in order to identify trends and possible changes. A spatial pattern relationship between extreme rainfall indices and the North Atlantic Oscillation has also been examined. The results generally suggest that the number of days with precipitation decreased while rainfall intensity increased, particularly in south-western parts of the country. A slight tendency towards intense rainfall events is suggested. The examined rainfall indices and North Atlantic Oscillation over Montenegro seemed to be directly linked to changes in one of the major large-scale circulation modes such as the NAO pattern that is particularly evident during the winter season.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 524 ◽  
Author(s):  
Wei Zhao ◽  
Ningfang Zhou ◽  
Shangfeng Chen

Observational and reanalysis data show that the surface air temperature (SAT) over most parts of Europe in June of 2019 broke the highest temperature on record. In this study, we investigate the factors for the formation of this record-breaking high temperature over Europe, focusing on the role of atmospheric circulation anomalies. A strong anomalous anticyclone appeared over Europe, with a quasi-barotropic vertical structure. On one hand, the downward motion anomalies associated with this anomalous anticyclone led to less cloud cover and an increase in downward shortwave radiation, which contributed to the SAT warming over Europe. On the other hand, southerly wind anomalies to the west side of the anomalous anticyclone also resulted in SAT warming via carrying warmer and wetter air northward from lower latitudes. The formation of the anticyclonic anomaly over Europe in June of 2019 was closely related to an atmospheric wave train propagating eastward from the mid-high latitudes of the North Atlantic to Eurasia. The atmospheric wave train over the North Atlantic–Eurasia region is suggested to be mainly related to the Atlantic–Eurasia teleconnection pattern. Further analysis indicates that a decrease in the local soil moisture over Europe may also have escalated the surface temperature warming through a positive land–atmosphere feedback.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zengxin Zhang ◽  
Qiu Jin ◽  
Xi Chen ◽  
Chong-Yu Xu ◽  
Shanshan Jiang

China is a nation that is affected by a multitude of natural disasters, including droughts and floods. In this paper, the variations of extreme drought and pluvial patterns and their relations to the large-scale atmospheric circulation have been analyzed based on monthly precipitation data from 483 stations during the period 1958–2010 in China. The results show the following:(1)the extreme drought and pluvial events in China increase significantly during that period. During 1959–1966 timeframe, more droughts occur in South China and more pluvial events are found in North China (DSC-PNC pattern); as for the period 1997–2003 (PSC-DNC pattern), the situation is the opposite.(2)There are good relationships among the extreme drought and pluvial events and the Western Pacific Subtropical High, meridional atmospheric moisture flux, atmospheric moisture content, and summer precipitation.(3)A cyclone atmospheric circulation anomaly occurs in North China, followed by an obvious negative height anomaly and a southern wind anomaly at 850 hPa and 500 hPa for the DSC-PNC pattern during the summer, and a massive ascending airflow from South China extends to North China at ~50∘N. As for the PSC-DNC pattern, the situation contrasts sharply with the DSC-PNC pattern.


2013 ◽  
Vol 70 (9) ◽  
pp. 2854-2874 ◽  
Author(s):  
Marie Drouard ◽  
Gwendal Rivière ◽  
Philippe Arbogast

Abstract Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it. Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.


2004 ◽  
Vol 17 (24) ◽  
pp. 4674-4691 ◽  
Author(s):  
Masahiro Watanabe

Abstract Anomalous atmospheric fields associated with the North Atlantic Oscillation (NAO) are analyzed on interannual and intraseasonal time scales in order to examine the extent to which the NAO is a regional phenomenon. Analyses on the interannual time scale reveal that the NAO signal is relatively confined to the Euro–Atlantic sector in December while it extends toward East Asia and the North Pacific in February. The difference is most clearly seen in the meridional wind anomaly, which shows a wave train along the Asian jet, collocated with an anomalous vorticity source near the jet entrance. Diagnoses using a linear barotropic model indicate that this wave train is interpreted as quasi-stationary Rossby waves trapped on the Asian jet waveguide, and effectively excited by the anomalous upper-level convergence over the Mediterranean Sea. It is found that, when the NAO accompanies the Mediterranean convergence (MC) anomaly, most frequently seen in February, the NAO indeed has a much wider horizontal structure than the classical picture, rather similar to the Arctic Oscillation. In such cases interannual variability of the NAO is tied to the East Asian climate variability such that the positive NAO tends to bring a surface warming over East Asia. Similar results are obtained from an analysis of individual NAO events based on low-pass-filtered daily fields, which additionally identified that the downstream extension occurs at the decay stage of the NAO event and the MC anomaly appears to be induced by the Ekman pumping associated with the NAO. The signal of the MC anomaly can be detected even at 5 days before the peak of the NAO, suggesting that the NAO influence to East Asia is predictable to some extent; therefore, monitoring the developing NAO event is useful to the medium-range weather forecast in East Asian countries.


2017 ◽  
Vol 30 (20) ◽  
pp. 8127-8147 ◽  
Author(s):  
Chie Yokoyama ◽  
Yukari N. Takayabu ◽  
Takeshi Horinouchi

Abstract A quasi-stationary front, called the baiu front, often appears during the early-summer rainy season in East Asia (baiu in Japan). The present study examines how precipitation characteristics during the baiu season are determined by the large-scale environment, using satellite observation three-dimensional precipitation data. Emphasis is placed on the effect of subtropical jet (STJ) and lower-tropospheric convective instability (LCI). A rainband appears together with a deep moisture convergence to the south of the STJ. Two types of mesoscale rainfall events (REs; contiguous rainfall areas), which are grouped by the stratiform precipitation ratio (SPR; stratiform precipitation over total precipitation), are identified: moderately stratiform REs (SPR of 0%–80%) representing tropical organized precipitation systems and highly stratiform REs (SPR of 80%–100%) representing midlatitude precipitation systems associated with extratropical cyclones. As the STJ becomes strong, rainfall from both types of mesoscale precipitation systems increases, with a distinct eastward extension of a midtropospheric moist region. In contrast, small systems appear regardless of the STJ, with high dependency on the LCI. The results indicate that the STJ plays a role in moistening the midtroposphere owing to ascent associated with secondary circulation to the south of the STJ, producing environments favorable for organized precipitation systems in the southern part of the rainband. The horizontal moisture flux convergence may also contribute to precipitation just along the STJ. On the other hand, the LCI plays a role in generating shallow convection. In high-LCI conditions, deep convection can occur without the aid of mesoscale organization.


Sign in / Sign up

Export Citation Format

Share Document