The leading mode and factors for coherent variations among the sub-systems of tropical Asian summer monsoon onset

2021 ◽  
pp. 1-63

Abstract Previous studies on the Asian summer monsoon (ASM) onset mainly focused on each monsoon sub-system. Mainly based on the monthly mean rainfall and low-level winds in May, this study investigated the dominant onset mode from the perspective of the entire tropical ASM region, which reveals the coherent features among the regional-scale onsets. The results of multivariate empirical orthogonal function (MV-EOF) analysis indicate that the MV-EOF1 presents reduced rainfall and anomalous low-level easterly winds at 850 hPa over the tropical ASM region in May during its positive phase. The corresponding principal component (PC1) is highly correlated with the local monsoon onset dates over Arabian Sea, Bay of Bengal, Indo-China Peninsula, and South China Sea, where the mean monsoon onsets occur in May. The only exception is India subcontinent, where the mean monsoon onsets occur in June. The results indicate that the leading mode captures the synchronized variation of monsoon onset over most of Asian monsoon sub-systems, which exhibits remarkably interannual and interdecadal changes. The factors that modulate the coherent variation of the tropical ASM onset are further examined. The simultaneously delayed ASM onset tends to occur during the easterly phase of the 30- to 80-day oscillation, the decaying phase of El Niño, and the positive phase of Pacific Decadal Oscillation (PDO). The 30- to 80-day oscillation serves as a background condition for the synchronized delayed or advanced ASM onset. El Niño-related sea surface temperature anomalies modulate the tropical ASM onset mode by modulating the tropical Walker Circulation and inducing an atmospheric Rossby wave response. The PDO affects the tropical ASM onset mode mainly via the equatorial Rossby wave response and the extratropical Rossby wave train.

2008 ◽  
Vol 136 (1) ◽  
pp. 189-205 ◽  
Author(s):  
Min Wen ◽  
Renhe Zhang

Abstract The quasi-biweekly oscillation (QBWO) of the tropical convection around Sumatra and its relation to the low-level circulation over the tropical Indian Ocean in boreal spring is investigated. From March to May, the convection over northern Sumatra increases continuously and oscillates with a pronounced period of 10–20 days. Time-lag cross correlations among the QBWOs of the convection, the apparent heat source, and winds in the lower troposphere reveal a possible mechanism of QBWO maintenance. In the strongest phase of the QBWO of the convection around Sumatra, there is an anomalous convective heating symmetric about the equator. The atmospheric Rossby wave response to the heating produces twin cyclones straddling the equator in the west of the convection area. The development of the twin cyclones induces an anomalous southerly north of the equator and a northerly south of the equator at 850 hPa, giving rise to the divergence of the low-level wind field, which weakens the convection around Sumatra. The weakening of the convection leads to the negative phase of convection. In the weakest phase, the Rossby wave response to the anomalous convective cooling produces twin anticyclones symmetric about the equator, resulting in the convergence of the low-level winds and, in turn, enhancing the convection around Sumatra. Consequently, the feedbacks among convection, the Rossby wave response, and the associated wind field at the lower troposphere may be important maintenance mechanisms of the tropical QBWO. The appearance of a tropical westerly is a crucial index of the Asian summer monsoon onset. In the northern equatorial region, the westerly first occurs just to the west of Sumatra, and then extends westward in boreal spring. The westerly around the equator associated with the Rossby wave response to the convective heating of the QBWO of the convection around Sumatra displays a notable intraseasonal feature, which may play an important role in modulating the process of the Asian summer monsoon onset.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Yongxiao Liang ◽  
Pengfeng Xiao

The effects of urbanization over eastern China on the East Asian summer monsoon (EASM) under different sea surface temperature background are compared using a Community Atmosphere Model (CAM5.1). Experiments of urbanization investigated by comparing two climate simulations with and without urban land cover under both positive and negative phases of Pacific Decadal Oscillation (PDO) show the spatial distribution of precipitation with ‘southern flood and northern drought’ and weakening status of EASM. The climate effect of urbanization in eastern China is significantly different from north to south. Anomalous vertical ascending motion due to the role of urbanization in the south of 30° N have induced an increase in convective available potential energy (CAPE) and precipitation increase over southern China. At the same time, the downward vertical motion occurs in the north of 30° N which cause warming over northern China. Due to the anti-cyclonic anomalies in the upper and lower layers of the north, the monsoon circulation is weakened which can reduce the precipitation. However, urbanization impact under various phases of PDO show different effect. In the 1956–1970 urbanization experiments of negative PDO phase, the downward vertical motion and anti-cyclonic anomalies in the north of 30° N are also weaker than that of positive phase of PDO in 1982–1996. In terms of this situation, the urbanization experiments of negative phase of PDO reveal that the range of the warming area over the north of 40° N is small, and the warming intensity is weak, but the precipitation change is more obvious compared with the background of positive phase of PDO.


2020 ◽  
Author(s):  
Xiaoning Xie ◽  
Gunnar Myhre ◽  
Xiaodong Liu ◽  
Xinzhou Li ◽  
Zhengguo Shi ◽  
...  

Abstract. Black carbon (BC) aerosols emitted from natural and anthropogenic sources induce positive radiative forcing and global warming, which in turn significantly affect the Asian summer monsoon (ASM). However, many aspects of the BC effect on ASM remain elusive and largely inconsistent among previous studies, which is strongly dependent on different low-level thermal feedbacks over the Asian continent and the surrounding ocean. This study examines the response of ASM to BC forcing in comparison with the effect of doubled greenhouse gases (GHGs) by analyzing the Precipitation Driver Response Model Intercomparison Project (PDRMIP) simulations under an extreme high BC level (10 times modern global BC emissions or concentrations, labeled by BC × 10) from nine global climate models (GCMs). The results show that although BC and GHGs both enhance the ASM precipitation minus evaporation (P–E) (a 13.6 % increase for BC forcing and 12.1 % for GHGs from the nine-model ensemble, respectively), there exists a much larger uncertainty in changes in ASM P–E induced by BC than by GHGs. The summer P–E is increased by 7.7 % to 15.3 % due to these two forcings over three sub-regions including East Asian, South Asian, and western North Pacific monsoon regions. Further analysis of moisture budget reveals distinct mechanisms controlling the increases in ASM P–E induced by BC and GHGs. The change in ASM P–E by BC is dominated by the dynamic effect due to the enhanced large-scale monsoon circulation, whereas the GHG-induced change is dominated by the thermodynamic effect through increasing atmospheric water vapor. Radiative forcing of BC significantly increases the upper-level atmospheric temperature over the Asian region to enhance the upper-level meridional land-sea thermal gradient (MLOTG), resulting in a northward shift of the upper-level subtropical westerly jet and an enhancement of the low-level monsoon circulation; whereas radiative forcing of GHGs significantly increases the tropical upper-level temperature, which reduces the upper-level MLOTG and suppresses the low-level monsoonal circulation. Hence, our results indicate a different mechanism of BC climate effects under the extreme high BC level, that BC forcing significantly enhances the upper-level atmospheric temperature over the Asian region, determining ASM changes, instead of low-level thermal feedbacks as indicated by previous studies.


2018 ◽  
Vol 70 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Shinu Sheela Wilson ◽  
P. V. Joseph ◽  
K. Mohanakumar ◽  
Ola M. Johannessen

2019 ◽  
Vol 46 (8) ◽  
pp. 4476-4484
Author(s):  
Ding Ma ◽  
Adam H. Sobel ◽  
Zhiming Kuang ◽  
Martin S. Singh ◽  
Ji Nie

Sign in / Sign up

Export Citation Format

Share Document