scholarly journals Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations

2005 ◽  
Vol 18 (17) ◽  
pp. 3506-3526 ◽  
Author(s):  
Norman G. Loeb ◽  
Natividad Manalo-Smith

Abstract The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March 2000–December 2003) of merged Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS–CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband shortwave (SW) radiances, and CERES clear-sky angular distribution models (ADMs) are used to estimate the corresponding top-of-atmosphere (TOA) radiative fluxes that are needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) algorithm that is used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA SSF); and (ii) the standard algorithm that is used by the MODIS aerosol group to produce the MODIS aerosol product (MOD04). Over global oceans, direct radiative cooling by aerosols for clear scenes that are identified from MOD04 is estimated to be 40% larger than for clear scenes from NOAA SSF (5.5 compared to 3.8 W m−2). Regionally, differences are largest in areas that are affected by dust aerosol, such as oceanic regions that are adjacent to the Sahara and Saudi Arabian deserts, and in northern Pacific Ocean regions that are influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be −2.0 W m−2 from MOD04, and −1.6 W m−2 from NOAA SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series that is considered.

2005 ◽  
Vol 22 (4) ◽  
pp. 338-351 ◽  
Author(s):  
Norman G. Loeb ◽  
Seiji Kato ◽  
Konstantin Loukachine ◽  
Natividad Manalo-Smith

Abstract The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.


2021 ◽  
Author(s):  
Babak Jahani ◽  
Hendrik Andersen ◽  
Josep Calbó ◽  
Josep-Abel González ◽  
Jan Cermak

Abstract. This study presents an approach for quantification of cloud-aerosol transition zone broadband longwave radiative effects at the top of the atmosphere (TOA) during daytime over the ocean, based on satellite observations and radiative transfer simulation. Specifically, we used several products from MODIS (Moderate Resolution Imaging Spectroradiometer) and CERES (Clouds and the Earth’s Radiant Energy System) sensors for identification and selection of CERES footprints with horizontally homogeneous transition zone and clear-sky conditions. For the selected transition zone footprints, radiative effect was calculated as the difference between the instantaneous CERES TOA upwelling broadband longwave radiance observations and corresponding clear-sky radiance simulations. The clear-sky radiances were simulated using the Santa Barbara DISORT Atmospheric Radiative Transfer model fed by the hourly ERA5 reanalysis (fifth generation ECMWF reanalysis) atmospheric and surface data. The CERES radiance observations corresponding to the clear-sky footprints detected were also used for validating the simulated clear-sky radiances. We tested this approach using the radiative measurements made by the MODIS and CERES instruments onboard Aqua platform over the south-eastern Atlantic Ocean during August 2010. For the studied period and domain, transition zone radiative effect (given in flux units) is on average equal to 8.0 ± 3.7 W m−2 (heating effect; median: 5.4 W m−2), although cases with radiative effects as large as 50 W m−2 were found.


2015 ◽  
Vol 15 (1) ◽  
pp. 505-518 ◽  
Author(s):  
A.-M. Sundström ◽  
A. Arola ◽  
P. Kolmonen ◽  
Y. Xue ◽  
G. de Leeuw ◽  
...  

Abstract. A satellite-based approach to derive the aerosol direct shortwave (SW) radiative effect (ADRE) was studied in an environment with highly variable aerosol conditions over eastern China from March to October 2009. The method is based on using coincident SW top-of-the-atmosphere (TOA) fluxes from the Clouds and the Earth's Radiant Energy System (CERES) and aerosol optical depths (AODs) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to derive SW clear-sky ADRE. The estimate for the aerosol-free TOA flux (F0,TOA) is obtained by establishing linear regression between CERES SW TOA fluxes and MODIS AODs. A normalization procedure to a fixed solar zenith angle, Earth–Sun distance and atmospheric water vapor content was applied to the CERES fluxes prior to the linear fit against AOD to reduce the flux variation not related to aerosols. In the majority of the cases, the normalization increased positive correlation between observed SW TOA fluxes and AODs, and it decreased RMSE. The key question in the satellite-based approach is the accuracy of the estimated F0,TOA. Comparison with simulated F0,TOA showed that both the satellite method and the model produced qualitatively similar spatial patterns, but absolute values differed. In 58 % of the cases the satellite-based F0,TOA was within ±10 W m−2 of the modeled value (about 7–8 % difference in flux values). Over bright surfaces, the satellite-based method tend to produce lower F0,TOA than the model. The satellite-based clear-sky estimates for median instantaneous and diurnally averaged ADRE over the study area were −8.8 W m−2 and −5.1 W m−2, respectively. Over heavily industrialized areas, the cooling at TOA was 2 to more than 3 times the median value, and associated with high AODs (> 0.5). Especially during the summer months, positive ADREs were observed locally over dark surfaces. This was most probably a method artifact related to systematic change of aerosol type, sub-visual cloud contamination or both.


2019 ◽  
Vol 36 (4) ◽  
pp. 717-732 ◽  
Author(s):  
F. Tornow ◽  
C. Domenech ◽  
J. Fischer

AbstractWe have investigated whether differences across Clouds and the Earth’s Radiant Energy System (CERES) top-of-atmosphere (TOA) clear-sky angular distribution models, estimated separately over regional (1° × 1° longitude–latitude) and temporal (monthly) bins above land, can be explained by geophysical parameters from Max Planck Institute Aerosol Climatology, version 1 (MAC-v1), ECMWF twentieth-century reanalysis (ERA-20C), and a MODIS bidirectional reflectance distribution function (BRDF)/albedo/nadir BRDF-adjusted reflectance (NBAR) Climate Modeling Grid (CMG) gap-filled products (MCD43GF) climatology. Our research aimed to dissolve binning and to isolate inherent properties or indicators of such properties, which govern the TOA radiance-to-flux conversion in the absence of clouds. We collocated over seven million clear-sky footprints from CERES Single Scanner Footprint (SSF), edition 4, data with above geophysical auxiliary data. Looking at data per surface type and per scattering direction—as perceived by the broadband radiometer (BBR) on board Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)—we identified optimal subsets of geophysical parameters using two different methods: random forest regression followed by a permutation test and multiple linear regression combined with the genetic algorithm. Using optimal subsets, we then trained artificial neural networks (ANNs). Flux error standard deviations on unseen test data were on average 2.7–4.0 W m−2, well below the 10 W m−2 flux accuracy threshold defined for the mission, with the exception of footprints containing fresh snow. Dynamic surface types (i.e., fresh snow and sea ice) required simpler ANN input sets to guarantee mission-worthy flux estimates, especially over footprints consisting of several surface types.


2017 ◽  
Author(s):  
Ricardo Alfaro-Contreras ◽  
Jianglong Zhang ◽  
Jeffrey S. Reid ◽  
Sundar Christopher

Abstract. By combining Collection 6 Moderate Resolution and Imaging Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer (MISR) aerosol products with Cloud and Earth’s Radiant Energy System (CERES) flux products, the aerosol optical thickness (AOT, at 0.55 µm) and Short-Wave Aerosol Radiative Effect (SWARE) trends are studied over ocean for the near full Terra (2000–2015) and Aqua (2002–2015) data records. Despite differences in sampling methods, regional SWARE and AOT trends are highly correlated with one another. Over global oceans, weak SWARE (cloud free SW flux) and AOT trends of 0.5–0.6 W m−2 (−0.5 to −0.6 W m−2) and 0.002 AOT decade−1 were found using Terra data. Near zero AOT and SWARE trends are also found for using Aqua data, regardless of Angular Distribution Models (ADMs) used. Regionally, positive SWARE and AOT trends are found over the Bay of Bengal, Arabian Sea, Arabian/Persian Gulf and the Red Sea, while statistically significant negative trends are derived over the Mediterranean Sea and the eastern US coast. In addition, the global mean instantaneous SW aerosol direct forcing efficiencies are found to be ~ −60 W m−2 per AOT, with corresponding SWARE values of ~ −7 W m−2 from both Aqua and Terra data, and again, regardless of CERES ADMs used. Regionally, SW aerosol direct forcing efficiency values of ~ −40 W m−2 per AOT are found over the southwest coast of Africa where smoke aerosol particles dominate in summer. Larger (in magnitude) SW aerosol direct forcing efficiency values of −50 to −80 W m−2 per AOT are found over several other dust and pollutant aerosol dominated regions. Lastly, the AOT and SWARE trends from this study are also inter-compared with aerosol trends (such as active-based) from several previous studies. Findings suggest that a cohesive understanding of the changing aerosol skies can be achieved through the analysis of observations from both passive- and active-based analyses, as well as at both narrow-band and broad-band data sets.


2015 ◽  
Vol 32 (6) ◽  
pp. 1121-1143 ◽  
Author(s):  
David A. Rutan ◽  
Seiji Kato ◽  
David R. Doelling ◽  
Fred G. Rose ◽  
Le Trang Nguyen ◽  
...  

AbstractThe Clouds and the Earth’s Radiant Energy System Synoptic (SYN1deg), edition 3, product provides climate-quality global 3-hourly 1° × 1°gridded top of atmosphere, in-atmosphere, and surface radiant fluxes. The in-atmosphere surface fluxes are computed hourly using a radiative transfer code based upon inputs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 3-hourly geostationary (GEO) data, and meteorological assimilation data from the Goddard Earth Observing System. The GEO visible and infrared imager calibration is tied to MODIS to ensure uniform MODIS-like cloud properties across all satellite cloud datasets. Computed surface radiant fluxes are compared to surface observations at 85 globally distributed land (37) and ocean buoy (48) sites as well as several other publicly available global surface radiant flux data products. Computed monthly mean downward fluxes from SYN1deg have a bias (standard deviation) of 3.0 W m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for longwave compared to surface observations. The standard deviation between surface downward shortwave flux calculations and observations at the 3-hourly time scale is reduced when the diurnal cycle of cloud changes is explicitly accounted for. The improvement is smaller for surface downward longwave flux owing to an additional sensitivity to boundary layer temperature/humidity, which has a weaker diurnal cycle compared to clouds.


2013 ◽  
Vol 30 (3) ◽  
pp. 557-568 ◽  
Author(s):  
Alexander Radkevich ◽  
Konstantin Khlopenkov ◽  
David Rutan ◽  
Seiji Kato

Abstract Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm’s goal is to enhance the identification of snow and ice within the Clouds and the Earth’s Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.


2013 ◽  
Vol 52 (4) ◽  
pp. 853-871 ◽  
Author(s):  
David S. Henderson ◽  
Tristan L’Ecuyer ◽  
Graeme Stephens ◽  
Phil Partain ◽  
Miho Sekiguchi

AbstractThe launch of CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in 2006 provided the first opportunity to incorporate information about the vertical distribution of cloud and aerosols directly into global estimates of atmospheric radiative heating. Vertical profiles of radar and lidar backscatter from CloudSat’s Cloud Profiling Radar (CPR) and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard CALIPSO naturally complement Moderate Resolution Imaging Spectroradiometer (MODIS) radiance measurements, providing a nearly complete depiction of the cloud and aerosol properties that are essential for deriving high-vertical-resolution profiles of longwave (LW) and shortwave (SW) radiative fluxes and heating rates throughout the atmosphere. This study describes a new approach for combining vertical cloud and aerosol information from CloudSat and CALIPSO with MODIS data to assess impacts of clouds and aerosols on top-of-atmosphere (TOA) and surface radiative fluxes. The resulting multisensor cloud–aerosol product is used to document seasonal and annual mean distributions of cloud and aerosol forcing globally from June 2006 through April 2011. Direct comparisons with Clouds and the Earth’s Radiant Energy System (CERES) TOA fluxes exhibit a close correlation, with improved errors relative to CloudSat-only products. Sensitivity studies suggest that remaining uncertainties in SW fluxes are dominated by uncertainties in CloudSat liquid water content estimates and that the largest sources of LW flux uncertainty are prescribed surface temperature and lower-tropospheric humidity. Globally and annually averaged net TOA cloud radiative effect is found to be −18.1 W m−2. The global, annual mean aerosol direct radiative effect is found to be −1.6 ± 0.5 W m−2 (−2.5 ± 0.8 W m−2 if only clear skies over the ocean are considered), which, surprisingly, is more consistent with past modeling studies than with observational estimates that were based on passive sensors.


2021 ◽  
Author(s):  
David Fillmore ◽  
David Rutan ◽  
Seiji Kato ◽  
Fred Rose ◽  
Thomas Caldwell

Abstract. Aerosol optical depths (AOD) used for the Edition 4.1 Clouds and the Earth’s Radiant Energy System (CERES) Synoptic (SYN1deg) are evaluated. AODs are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations and assimilated by an aerosol transport model (MATCH). As a consequence, clear-sky AODs closely match with those derived from MODIS instruments. AODs under all-sky conditions are larger than AODs under clear-sky conditions, which is supported by ground-based AERONET observations. When all-sky MATCH AODs are compared with Modern-Era Retrospective Analysis for Research and Applications (MERRA2) AODs, MATCH AODs are generally larger than MERRA2 AODS especially over convective regions (e.g. Amazon, central Africa, and eastern Asia). The difference is largely caused by MODIS AODs used for assimilation. Including AODs with larger retrieval uncertainty makes AODs over the convective regions larger. When AODs are used for clear-sky irradiance computations and computed downward shortwave irradiances are compared with ground- based observations, the computed instantaneous irradiances are 1 % to 2 % larger than observed irradiances. The comparison of top-of-atmosphere clear-sky irradiances with those derived from CERES observations suggests that AODs used for surface radiation observation sites are larger by 0.01 to 0.03, which is within the uncertainty of instantaneous MODIS AODs. However, the comparison with AERONET AOD suggests AODs used for computations over desert sites are 0.08 larger. The cause of positive biases of downward shortwave irradiance and AODs for the desert sites are unknown.


2015 ◽  
Vol 8 (5) ◽  
pp. 4489-4536 ◽  
Author(s):  
W. Su ◽  
J. Corbett ◽  
Z. Eitzen ◽  
L. Liang

Abstract. Radiative fluxes at the top of the atmosphere (TOA) from the Clouds and the Earth's Radiant Energy System (CERES) instrument are fundamental variables for understanding the Earth's energy balance and how it changes with time. TOA radiative fluxes are derived from the CERES radiance measurements using empirical angular distribution models (ADMs). This paper evaluates the accuracy of CERES TOA fluxes using direct integration and flux consistency tests. Direct integration tests show that the overall bias in regional monthly mean TOA shortwave (SW) flux is less than 0.2 W m−2 and the RMS error is less than 1.1 W m−2. The bias and RMS error are very similar between Terra and Aqua. The bias in regional monthly mean TOA LW fluxes is less than 0.5 W m−2 and the RMS error is less than 0.8 W m−2 for both Terra and Aqua. The accuracy of the TOA instantaneous flux is assessed by performing tests using fluxes inverted from nadir- and oblique-viewing angles using CERES along-track observations and temporally- and spatially-matched MODIS observations, and using fluxes inverted from multi-angle MISR observations. The TOA instantaneous SW flux uncertainties are about 2.3% (1.9 W m−2) over clear ocean, 1.6% (4.5 W m−2) over clear land, and 2.0% (6.0 W m−2) over clear snow/ice; and are about 3.3% (9.0 W m−2), 2.7% (8.4 W m−2), and 3.7% (9.9 W m−2) over ocean, land, and snow/ice under all-sky conditions. The TOA SW flux uncertainties are generally larger for thin broken clouds than for moderate and thick overcast clouds. The TOA instantaneous daytime LW flux uncertainties are 0.5% (1.5 W m−2), 0.8% (2.4 W m−2), and 0.7 % (1.3 W m−2) over clear ocean, land, and snow/ice; and are about 1.5% (3.5 W m−2), 1.0% (2.9 W m−2), and 1.1 % (2.1 W m−2) over ocean, land, and snow/ice under all-sky conditions. The TOA instantaneous nighttime LW flux uncertainties are about 0.5–1% (< 2.0 W m−2) for all surface types. Flux uncertainties caused by errors in scene identification are also assessed by using the collocated CALIPSO, CloudSat, CERES and MODIS data product. Errors in scene identification tend to underestimate TOA SW flux by about 0.6 W m−2 and overestimate TOA daytime (nighttime) LW flux by 0.4 (0.2) W m−2 when all CERES viewing angles are considered.


Sign in / Sign up

Export Citation Format

Share Document