scholarly journals A Supplementary Clear-Sky Snow and Ice Recognition Technique for CERES Level 2 Products

2013 ◽  
Vol 30 (3) ◽  
pp. 557-568 ◽  
Author(s):  
Alexander Radkevich ◽  
Konstantin Khlopenkov ◽  
David Rutan ◽  
Seiji Kato

Abstract Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm’s goal is to enhance the identification of snow and ice within the Clouds and the Earth’s Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.

2013 ◽  
Vol 30 (6) ◽  
pp. 1072-1090 ◽  
Author(s):  
David R. Doelling ◽  
Norman G. Loeb ◽  
Dennis F. Keyes ◽  
Michele L. Nordeen ◽  
Daniel Morstad ◽  
...  

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth’s top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1° latitude × 1° longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m−2 over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.


2015 ◽  
Vol 15 (1) ◽  
pp. 505-518 ◽  
Author(s):  
A.-M. Sundström ◽  
A. Arola ◽  
P. Kolmonen ◽  
Y. Xue ◽  
G. de Leeuw ◽  
...  

Abstract. A satellite-based approach to derive the aerosol direct shortwave (SW) radiative effect (ADRE) was studied in an environment with highly variable aerosol conditions over eastern China from March to October 2009. The method is based on using coincident SW top-of-the-atmosphere (TOA) fluxes from the Clouds and the Earth's Radiant Energy System (CERES) and aerosol optical depths (AODs) from the MODerate Resolution Imaging Spectroradiometer (MODIS) to derive SW clear-sky ADRE. The estimate for the aerosol-free TOA flux (F0,TOA) is obtained by establishing linear regression between CERES SW TOA fluxes and MODIS AODs. A normalization procedure to a fixed solar zenith angle, Earth–Sun distance and atmospheric water vapor content was applied to the CERES fluxes prior to the linear fit against AOD to reduce the flux variation not related to aerosols. In the majority of the cases, the normalization increased positive correlation between observed SW TOA fluxes and AODs, and it decreased RMSE. The key question in the satellite-based approach is the accuracy of the estimated F0,TOA. Comparison with simulated F0,TOA showed that both the satellite method and the model produced qualitatively similar spatial patterns, but absolute values differed. In 58 % of the cases the satellite-based F0,TOA was within ±10 W m−2 of the modeled value (about 7–8 % difference in flux values). Over bright surfaces, the satellite-based method tend to produce lower F0,TOA than the model. The satellite-based clear-sky estimates for median instantaneous and diurnally averaged ADRE over the study area were −8.8 W m−2 and −5.1 W m−2, respectively. Over heavily industrialized areas, the cooling at TOA was 2 to more than 3 times the median value, and associated with high AODs (> 0.5). Especially during the summer months, positive ADREs were observed locally over dark surfaces. This was most probably a method artifact related to systematic change of aerosol type, sub-visual cloud contamination or both.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2019 ◽  
Vol 11 (24) ◽  
pp. 2919
Author(s):  
Chuan Zhan ◽  
Richard P. Allan ◽  
Shunlin Liang ◽  
Dongdong Wang ◽  
Zhen Song

Five satellite top-of-atmosphere (TOA) albedo products over land were evaluated in this study including global products from the Advanced Very High Resolution Radiometer (AVHRR) (TAL-AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) (TAL-MODIS), and Clouds and the Earth’s Radiant Energy System (CERES); one regional product from the Climate Monitoring Satellite Application Facility (CM SAF); and one harmonized product termed Diagnosing Earth’s Energy Pathways in the Climate system (DEEP-C). Results showed that overall, there is good consistency among these five products, particularly after the year 2000. The differences among these products in the high-latitude regions were relatively larger. The percentage differences among TAL-AVHRR, TAL-MODIS, and CERES were generally less than 20%, while the differences between TAL-AVHRR and DEEP-C before 2000 were much larger. Except for the obvious decrease in the differences after 2000, the differences did not show significant changes over time, but varied among different regions. The differences between TAL-AVHRR and the other products were relatively large in the high-latitude regions of North America, Asia, and the Maritime Continent, while the differences between DEEP-C and CM SAF in Europe and Africa were smaller. Interannual variability was consistent between products after 2000, before which the differences among the three products were much larger.


2005 ◽  
Vol 22 (4) ◽  
pp. 338-351 ◽  
Author(s):  
Norman G. Loeb ◽  
Seiji Kato ◽  
Konstantin Loukachine ◽  
Natividad Manalo-Smith

Abstract The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.


2005 ◽  
Vol 18 (17) ◽  
pp. 3506-3526 ◽  
Author(s):  
Norman G. Loeb ◽  
Natividad Manalo-Smith

Abstract The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March 2000–December 2003) of merged Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS–CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband shortwave (SW) radiances, and CERES clear-sky angular distribution models (ADMs) are used to estimate the corresponding top-of-atmosphere (TOA) radiative fluxes that are needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) algorithm that is used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA SSF); and (ii) the standard algorithm that is used by the MODIS aerosol group to produce the MODIS aerosol product (MOD04). Over global oceans, direct radiative cooling by aerosols for clear scenes that are identified from MOD04 is estimated to be 40% larger than for clear scenes from NOAA SSF (5.5 compared to 3.8 W m−2). Regionally, differences are largest in areas that are affected by dust aerosol, such as oceanic regions that are adjacent to the Sahara and Saudi Arabian deserts, and in northern Pacific Ocean regions that are influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be −2.0 W m−2 from MOD04, and −1.6 W m−2 from NOAA SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series that is considered.


2021 ◽  
Author(s):  
Babak Jahani ◽  
Hendrik Andersen ◽  
Josep Calbó ◽  
Josep-Abel González ◽  
Jan Cermak

Abstract. This study presents an approach for quantification of cloud-aerosol transition zone broadband longwave radiative effects at the top of the atmosphere (TOA) during daytime over the ocean, based on satellite observations and radiative transfer simulation. Specifically, we used several products from MODIS (Moderate Resolution Imaging Spectroradiometer) and CERES (Clouds and the Earth’s Radiant Energy System) sensors for identification and selection of CERES footprints with horizontally homogeneous transition zone and clear-sky conditions. For the selected transition zone footprints, radiative effect was calculated as the difference between the instantaneous CERES TOA upwelling broadband longwave radiance observations and corresponding clear-sky radiance simulations. The clear-sky radiances were simulated using the Santa Barbara DISORT Atmospheric Radiative Transfer model fed by the hourly ERA5 reanalysis (fifth generation ECMWF reanalysis) atmospheric and surface data. The CERES radiance observations corresponding to the clear-sky footprints detected were also used for validating the simulated clear-sky radiances. We tested this approach using the radiative measurements made by the MODIS and CERES instruments onboard Aqua platform over the south-eastern Atlantic Ocean during August 2010. For the studied period and domain, transition zone radiative effect (given in flux units) is on average equal to 8.0 ± 3.7 W m−2 (heating effect; median: 5.4 W m−2), although cases with radiative effects as large as 50 W m−2 were found.


2020 ◽  
Author(s):  
Qi Zeng ◽  
Jie Cheng ◽  
Feng Yang

&lt;p&gt;Surface longwave (LW) radiation plays an important rolein global climatic change, which is consist of surface longwave upward radiation (LWUP), surface longwave downward radiation (LWDN) and surface longwave net radiation (LWNR). Numerous studies have been carried out to estimate LWUP or LWDN from remote sensing data, and several satellite LW radiation products have been released, such as the International Satellite Cloud Climatology Project&amp;#8208;Flux Data (ISCCP&amp;#8208;FD), the Global Energy and Water cycle Experiment&amp;#8208;Surface Radiation Budget (GEWEX&amp;#8208;SRB) and the Clouds and the Earth&amp;#8217;s Radiant Energy System&amp;#8208;Gridded Radiative Fluxes and Clouds (CERES&amp;#8208;FSW). But these products share the common features of coarse spatial resolutions (100-280 km) and lower validation accuracy.&lt;/p&gt;&lt;p&gt;Under such circumstance, we developed the methods of estimating long-term high spatial resolution all sky&amp;#160; instantaneous LW radiation, and produced the corresponding products from MODIS data from 2000 through 2018 (Terra and Aqua), named as Global LAnd Surface Satellite (GLASS) Longwave Radiation product, which can be free freely downloaded from the website (http://glass.umd.edu/Download.html).&lt;/p&gt;&lt;p&gt;In this article, ground measurements collected from 141 sites in six independent networks (AmerciFlux, AsiaFlux, BSRN, CEOP, HiWATER-MUSOEXE and TIPEX-III) are used to evaluate the clear-sky GLASS LW radiation products at global scale. The bias and RMSE is -4.33 W/m&lt;sup&gt;2 &lt;/sup&gt;and 18.15 W/m&lt;sup&gt;2 &lt;/sup&gt;for LWUP, -3.77 W/m&lt;sup&gt;2 &lt;/sup&gt;and 26.94 W/m&lt;sup&gt;2&lt;/sup&gt; for LWDN, and 0.70 W/m&lt;sup&gt;2 &lt;/sup&gt;and 26.70 W/m&lt;sup&gt;2&lt;/sup&gt; for LWNR, respectively. Compared with validation results of the above mentioned three LW radiation products, the overall accuracy of GLASS LW radiation product is much better. We will continue to improve the retrieval algorithms and update the products accordingly.&lt;/p&gt;


2005 ◽  
Vol 44 (9) ◽  
pp. 1361-1374 ◽  
Author(s):  
J. M. Futyan ◽  
J. E. Russell

Abstract This paper describes the planned processing of monthly mean and monthly mean diurnal cycle flux products for the Geostationary Earth Radiation Budget (GERB) experiment. The use of higher-spatial-resolution flux estimates based on multichannel narrowband imager data to improve clear-sky sampling is investigated. Significant improvements in temporal sampling are found, leading to reduced temporal sampling errors and less dependence on diurnal models for the monthly mean products. The reduction in temporal sampling errors is found to outweigh any spatial sampling errors that are introduced. The resulting flux estimates are used to develop an improved version of the half-sine model that is used for the diurnal interpolation of clear-sky longwave fluxes over land in the Earth Radiation Budget Experiment (ERBE) and Clouds and the Earth’s Radiant Energy System (CERES) missions. Maximum outgoing longwave radiation occurs from 45 min to 1.5 h after local noon for most of the GERB field of view. Use of the ERBE half-sine model for interpolation therefore results in significant distortion of the diurnal cycle shape. The model that is proposed here provides a well-constrained fit to the true diurnal shape, even for limited clear-sky sampling, making it suitable for use in the processing of both GERB and CERES second-generation monthly mean clear-sky data products.


2021 ◽  
Author(s):  
David Fillmore ◽  
David Rutan ◽  
Seiji Kato ◽  
Fred Rose ◽  
Thomas Caldwell

Abstract. Aerosol optical depths (AOD) used for the Edition 4.1 Clouds and the Earth’s Radiant Energy System (CERES) Synoptic (SYN1deg) are evaluated. AODs are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations and assimilated by an aerosol transport model (MATCH). As a consequence, clear-sky AODs closely match with those derived from MODIS instruments. AODs under all-sky conditions are larger than AODs under clear-sky conditions, which is supported by ground-based AERONET observations. When all-sky MATCH AODs are compared with Modern-Era Retrospective Analysis for Research and Applications (MERRA2) AODs, MATCH AODs are generally larger than MERRA2 AODS especially over convective regions (e.g. Amazon, central Africa, and eastern Asia). The difference is largely caused by MODIS AODs used for assimilation. Including AODs with larger retrieval uncertainty makes AODs over the convective regions larger. When AODs are used for clear-sky irradiance computations and computed downward shortwave irradiances are compared with ground- based observations, the computed instantaneous irradiances are 1 % to 2 % larger than observed irradiances. The comparison of top-of-atmosphere clear-sky irradiances with those derived from CERES observations suggests that AODs used for surface radiation observation sites are larger by 0.01 to 0.03, which is within the uncertainty of instantaneous MODIS AODs. However, the comparison with AERONET AOD suggests AODs used for computations over desert sites are 0.08 larger. The cause of positive biases of downward shortwave irradiance and AODs for the desert sites are unknown.


Sign in / Sign up

Export Citation Format

Share Document