scholarly journals Preferred Modes of Variability and Their Relationship with Climate Change

2006 ◽  
Vol 19 (10) ◽  
pp. 2063-2075 ◽  
Author(s):  
Seok-Woo Son ◽  
Sukyoung Lee

Abstract Spatial structure of annular modes shows a remarkable resemblance to that of the recent trend in the observed circulation (Thompson et al.). This study performs a series of multilevel primitive equation model simulations to examine the extent to which the annular mode is capable of predicting changes in the zonal-mean flow response to external heat perturbations. Each of these simulations represents a statistically steady state and differs from each other in the values of the imposed tropical heating (ℋ) and high-latitude cooling (𝒞). Defining the annular mode as the first empirical orthogonal function (EOF1) of zonal-mean tropospheric zonal wind, it is found that the “climate predictability” is generally high in the small 𝒞–large ℋ region of the parameter space, but is markedly low in the large 𝒞–small ℋ region. In the former region, EOF1 represents meridional meandering of the midlatitude jet, while in the latter region, EOF1 and EOF2 combine to represent coherent poleward propagation of zonal-mean flow anomalies. It is also found that the climate predictability tends to be higher with respect to changes in 𝒞 than to changes in ℋ. The implications of these findings for the Southern Hemisphere climate predictability are also presented.

2020 ◽  
Author(s):  
Sandro Lubis ◽  
Pedram Hassanzadeh

<p>Some types of extreme events<span> in the extratropics are often associated with anomalous jet behaviors. A well-known example is the annular mode, wherein its variation e.g., the meandering in the north-south direction of the jet, disrupts the normal eastward migration of troughs and ridges.</span> <span>Since the seminal works of Lorenz and Hartmann, the annular mode has been mostly analyzed based on single EOF mode. However, a recent study showed that the first and second leading EOFs are strongly correlated at long lags and are manifestations of a single oscillatory decaying-mode. This means that the first and second leading EOF modes interact and exert feedbacks on each other. The purpose of this study is to develop an eddy-feedback model for the extratropical low-frequency variability that includes these cross-EOF feedbacks to better isolate the eddy momentum/heat flux changes with time- and/or zonal-mean flow. Our results show that, in the presence of the poleward-propagation regime, the first and second leading EOF modes interact and exert positive feedbacks at lags ~10 (~20) days about ~0.07 (~0.16) day</span><span><sup>-1</sup></span><span> in the reanalysis (idealized GCM). This feedback is often ignored in the previous studies, and in fact, the magnitude is nearly double the feedback exerted by the single EOF mode. We found that this apparent positive eddy feedback is a result of the effect of jet pulsation (strengthening and weakening) in zonal flow variability (z</span><span><sub>2</sub></span><span>) on the eddy momentum flux due to the meandering in the north-south direction of the jet (m</span><span><sub>1</sub></span><span>). A finite-amplitude eddy-mean flow interaction diagnostic has been performed to demonstrate the dynamics governing the positive feedback in the propagating regime of the annular modes. It is shown that the poleward propagation is caused by an orchestrated combination of equatorward propagation of wave activity (baroclinic process), nonlinear wave breaking (barotropic processes), and radiative relaxation. The latter two processes follow the first one, and as such, the meridional propagation of Rossby wave activity (likely generated by an enhanced baroclinic wave source at a low level) is the central mechanism. Finally, our model calculations suggest the rule of thumb that the propagating annular modes (i.e., when EOF1 and EOF2 together represent quasi-periodic poleward propagation of zonal-mean flow anomalies) exist if the ratio of the fractional variance and decorrelation time-scale of EOF2 to that of EOF1 exceeds 0.5 or the two leading PCs showing maximum correlations at larger lags. These criteria can be used to assess the predictability of preferred modes of extratropical circulation in GCMs. The present study advances and potentially transforms the state of our understanding of the low-frequency variability of the extratropical circulation.</span></p>


2009 ◽  
Vol 66 (4) ◽  
pp. 837-863 ◽  
Author(s):  
Pablo Zurita-Gotor ◽  
Geoffrey K. Vallis

Abstract This paper investigates the equilibration of baroclinic turbulence in an idealized, primitive equation, two-level model, focusing on the relation with the phenomenology of quasigeostrophic turbulence theory. Simulations with a comparable two-layer quasigeostrophic model are presented for comparison, with the deformation radius in the quasigeostrophic model being set using the stratification from the primitive equation model. Over a fairly broad parameter range, the primitive equation and quasigeostrophic results are in qualitative and, to some degree, quantitative agreement and are consistent with the phenomenology of geostrophic turbulence. The scale, amplitude, and baroclinicity of the eddies and the degree of baroclinic instability of the mean flow all vary fairly smoothly with the imposed parameters; both models are able, in some parameter ranges, to produce supercritical flows. The criticality in the primitive equation model, which does not have any convective parameterization scheme, is fairly sensitive to the external parameters, most notably the planet size (i.e., the f /β ratio), the forcing time scale, and the factors influencing the stratification. In some parameter settings of the models, although not those that are most realistic for the earth’s atmosphere, it is possible to produce eddies that are considerably larger than the deformation scales and an inverse cascade in the barotropic flow with a −5/3 spectrum. The vertical flux of heat is found to be related to the isentropic slope.


2007 ◽  
Vol 64 (9) ◽  
pp. 3113-3131 ◽  
Author(s):  
I. G. Watterson

Abstract Both high-latitude (HLM) and low-latitude modes (LLM) of variability of zonal wind in the Southern Hemisphere have been identified. Through an analysis of a simulation for 1871–2200 by the CSIRO Mark 3 climate model, the extent to which these might both be described as “annular modes,” based on their statistical patterns, physical mechanisms, and usefulness in climate study, is assessed. The modes are determined as EOF1 and EOF2 of vertically integrated zonal and monthly mean zonal wind, for 1871–1970. These match well those from ECMWF Re-Analysis (ERA) data and also from the earlier Mark 2 model. The mode index time series relate to largely annular patterns of local wind and surface pressure anomalies [with HLM giving the familiar southern annular mode (SAM)], and other simulated quantities. While modes calculated from 90° sectors are only moderately correlated (mostly in the polar region) for HLM, the link increases with time scale. There is little such relationship for LLM. A momentum equation analysis using daily data confirms that both zonal modes are driven by eddies, but only HLM features a positive eddy–mean flow feedback. Variation in feedback and surface damping through the seasonal cycle relate well to that in index autocorrelation, with the HLM being more persistent in summer. Stratospheric winds feature a long-lived component that tends to lead the HLM. The HLM drives sea surface temperature anomalies that persist for months, and coupling with the ocean increases variability on longer time scales. The annular variability in the warmer climate of the twenty-second century is barely changed, but the mean climate change in the far south projects strongly on the HLM. The LLM features some statistical annularity and may have some uses. However, only the HLM can be considered to be a physically based mode—the zonal-wind equivalent to the one southern annular mode.


2011 ◽  
Vol 68 (4) ◽  
pp. 823-838 ◽  
Author(s):  
Pablo Zurita-Gotor ◽  
Geoffrey K. Vallis

Abstract This paper investigates the factors that determine the equilibrium state, and in particular the height and structure of the tropopause, in an idealized primitive equation model forced by Newtonian cooling in which the eddies can determine their own depth. Previous work has suggested that the midlatitude tropopause height may be understood as the intersection between a radiative and a dynamical constraint. The dynamical constraint relates to the lateral transfer of energy, which in midlatitudes is largely effected by baroclinic eddies, and its representation in terms of mean-flow properties. Various theories have been proposed and investigated for the representation of the eddy transport in terms of the mean flow, including a number of diffusive closures and the notion that the flow evolves to a state marginally supercritical to baroclinic instability. The radiative constraint expresses conservation of energy and so must be satisfied, although it need not necessarily be useful in providing a tight constraint on tropopause height. This paper explores whether and how the marginal criticality and radiative constraints work together to produce an equilibrated flow and a tropopause that is internal to the fluid. The paper investigates whether these two constraints are consistent with simulated variations in the tropopause height and in the mean state when the external parameters of an idealized primitive equation model are changed. It is found that when the vertical redistribution of heat is important, the radiative constraint tightly constrains the tropopause height and prevents an adjustment to marginal criticality. In contrast, when the stratification adjustment is small, the radiative constraint is only loosely satisfied and there is a tendency for the flow to adjust to marginal criticality. In those cases an alternative dynamical constraint would be needed in order to close the problem and determine the eddy transport and tropopause height in terms of forcing and mean flow.


2008 ◽  
Vol 21 (9) ◽  
pp. 1963-1978 ◽  
Author(s):  
Adam H. Monahan ◽  
John C. Fyfe

Abstract This study considers the relation of the annular mode to the kinematics of a fluctuating jet in zonal-mean zonal wind and to the zonal index, using an idealized model of fluctuations in the eddy-driven jet. When the sphericity of the domain is accounted for, observed and numerically simulated annular modes for the Southern Hemisphere summertime are found to be in excellent agreement. In particular, the annular mode and zonal index mode are shown to be related but distinct. Although the annular mode is strongly (but not identically) related to fluctuations in jet position, fluctuations in jet strength and width are shown to also be important for its simulation. When the sphericity of the domain is neglected, analytic expressions for the leading empirical orthogonal function (EOF) modes of zonal-mean geopotential for the cases of individual fluctuations in jet strength, position, and width can be obtained. None of these EOF modes have the characteristics of the annular mode. In the presence of simultaneous fluctuations in jet strength and position, the leading zonal-mean geopotential EOF mode (strongly resembling the annular mode) is shown to mix the zonal index mode of zonal-mean zonal wind with other EOF modes, demonstrating why the annular mode and zonal index mode are related but distinct. The greater sensitivity to domain size of EOF modes of geopotential relative to the EOF modes of zonal-mean zonal wind is also discussed. This study focuses on the Southern Hemisphere summertime, which is characterized by a single, eddy-driven jet; the generality of the results presented suggest that the conclusions should be qualitatively unchanged in the presence of both subtropical and eddy-driven jets.


2010 ◽  
Vol 23 (23) ◽  
pp. 6186-6199 ◽  
Author(s):  
Joseph Kidston ◽  
D. M. W. Frierson ◽  
J. A. Renwick ◽  
G. K. Vallis

Abstract The characteristics of the dominant pattern of extratropical variability (the so-called annular modes) are examined in the context of the theory that eddy-driven jets are self-maintaining. It is shown that there is genuine hemispheric symmetry in the variation of the zonal wind in the Southern Hemisphere but not the Northern Hemisphere. The annular mode is shown to be baroclinic in nature; it is associated with changes in the baroclinic eddy source latitude, and the latitude of the eddy source region is organized by the mean flow. This behavior is expected if there is a baroclinic feedback that encourages the maximum baroclinic instability to be coincident with the maximum zonal wind speed, and discourages the meridional vacillation of the eddy-driven jet stream. It is shown that the strength of the thermally indirect circulation that gives rise to the baroclinic feedback appears to influence the time scale of the annular mode. When the thermally indirect circulation is stronger the annular mode has a longer e-folding time in a simplified GCM. Preliminary results indicate that the same dynamics are important in the real atmosphere.


2013 ◽  
Vol 26 (14) ◽  
pp. 5220-5241 ◽  
Author(s):  
Isla R. Simpson ◽  
Theodore G. Shepherd ◽  
Peter Hitchcock ◽  
John F. Scinocca

Abstract Many global climate models (GCMs) have trouble simulating southern annular mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two-part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve the understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy–mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary-scale waves, in particular zonal wavenumber 3, is found in a localized region in the southwest Pacific. It cancels a large proportion of the positive feedback by synoptic- and smaller-scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary-scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.


2015 ◽  
Vol 15 (16) ◽  
pp. 22291-22329 ◽  
Author(s):  
C. E. Sioris ◽  
J. Zou ◽  
D. A. Plummer ◽  
C. D. Boone ◽  
C. T. McElroy ◽  
...  

Abstract. Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60–90 and 60–90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = −0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004–2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950–2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.


Sign in / Sign up

Export Citation Format

Share Document