scholarly journals Improving SST Anomaly Simulations in a Layer Ocean Model with an Embedded Entrainment Temperature Submodel

2006 ◽  
Vol 19 (18) ◽  
pp. 4638-4663 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Antonio J. Busalacchi ◽  
Raghuram G. Murtugudde

Abstract In this study, an improved sea surface temperature (SST) anomaly (SSTA) solution for the tropical Pacific is presented by explicitly embedding into a layer ocean general circulation model (OGCM) a separate SSTA submodel with an empirical parameterization for the temperature of subsurface water entrained into the ocean mixed layer (Te). Instead of using subsurface temperature directly from the OGCM, Te anomalies for the embedded SSTA submodel are calculated from a historical data-based empirical procedure in terms of sea level (SL) anomalies simulated from the OGCM. An inverse modeling approach is first adopted to estimate Te anomalies from the SSTA equation using observed SST and simulated upper-ocean currents from the OGCM. A relationship between Te and SL anomalies is then obtained by utilizing an empirical orthogonal function (EOF) analysis technique. The empirical Te parameterization optimally leads to a better balanced depiction of the subsurface effect on SST variability by the mean upwelling of anomalous subsurface temperature and vertical mixing in the equatorial Pacific. As compared with a standard OGCM simulation, SSTA simulations from the embedded submodel exhibit more realistic variability, with significantly increased correlation and reduced SSTA errors due to the optimized empirical Te parameterization. In the Niño-3 region (5°S–5°N, 150°–90°W), the anomaly correlation and root-mean-square (RMS) error of the simulated SST anomalies for the period 1963–96 from the standard OGCM are 0.74° and 0.58°C, while from the embedded SSTA submodel they are 0.94° and 0.29°C in the Te-dependent experiment, and 0.86° and 0.41°C in the experiment with one-dependent-year data excluded, respectively. Cross validation and sensitivity experiments to training periods for building the Te parameterization are made to illustrate the robustness and effectiveness of the approach. Moreover, the impact on simulations of SST anomalies and El Niño are examined in hybrid coupled atmosphere–ocean models (HCMs) consisting of the OGCM and a statistical atmospheric wind stress anomaly model that is constructed from a singular value decomposition (SVD) analysis. Results from coupled runs with and without embedding the SSTA submodel are compared. It is demonstrated that incorporating the embedded SSTA submodel in the context of an OGCM has a significant impact on performance of the HCMs and the behavior of the coupled system, with more realistic simulations of interannual SST anomalies (e.g., the amplitude and structure) in the tropical Pacific.

2021 ◽  
pp. 1-46
Author(s):  
Xiaohe An ◽  
Bo Wu ◽  
Tianjun Zhou ◽  
Bo Liu

AbstractInterdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO), two leading modes of decadal climate variability, are not independent. It was proposed that ENSO-like sea surface temperature (SST) variations play a central role in the Pacific responses to the AMO forcing. However, observational analyses indicate that the AMO-related SST anomalies in the tropical Pacific are far weaker than those in the extratropical North Pacific. Here, we show that SST in the North Pacific is tied to the AMO forcing by convective heating associated with precipitation over the tropical Pacific, instead of by SST there, based on an ensemble of pacemaker experiments with North Atlantic SST restored to the observation in a coupled general circulation model. The AMO modulates precipitation over the equatorial and tropical southwestern Pacific through exciting an anomalous zonal circulation and an interhemispheric asymmetry of net moist static energy input into the atmosphere. The convective heating associated with the precipitation anomalies drive SST variations in the North Pacific through a teleconnection, but remarkably weaken the ENSO-like SST anomalies through a thermocline damping effect. This study has implications that the IPO is a combined mode generated by both AMO forcing and local air-sea interactions, but the IPO-related global-warming acceleration/slowdown is independent of the AMO.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


2006 ◽  
Vol 19 (9) ◽  
pp. 1802-1819 ◽  
Author(s):  
Shuanglin Li ◽  
Martin P. Hoerling ◽  
Shiling Peng ◽  
Klaus M. Weickmann

Abstract The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies. A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response has a maximum near the exit of the Pacific jet, but with a different meridional position relative to the upper-level jet. The emergence of an annular response is found to be very sensitive to whether transient eddy forcing anomalies occur within the axis of the jet core. For forcing within the jet core, energy propagates poleward and downstream, inducing an annular response. For forcing away from the jet core, energy propagates equatorward and downstream, inducing a trapped regional response. The selection of an annular versus a regionally confined tropospheric response is thus postulated to depend on how the storm tracks respond. Tropical west Pacific SST forcing is particularly effective in exciting the required storm-track response from which a hemisphere-wide teleconnection structure emerges.


2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 967-975 ◽  
Author(s):  
A. J. G. Nurser ◽  
S. Bacon

Abstract. The first (and second) baroclinic deformation (or Rossby) radii are presented north of ~60° N, focusing on deep basins and shelf seas in the high Arctic Ocean, the Nordic seas, Baffin Bay, Hudson Bay and the Canadian Arctic Archipelago, derived from climatological ocean data. In the high Arctic Ocean, the first Rossby radius increases from ~5 km in the Nansen Basin to ~15 km in the central Canadian Basin. In the shelf seas and elsewhere, values are low (1–7 km), reflecting weak density stratification, shallow water, or both. Seasonality strongly impacts the Rossby radius only in shallow seas, where winter homogenization of the water column can reduce it to below 1 km. Greater detail is seen in the output from an ice–ocean general circulation model, of higher resolution than the climatology. To assess the impact of secular variability, 10 years (2003–2012) of hydrographic stations along 150° W in the Beaufort Gyre are also analysed. The first-mode Rossby radius increases over this period by ~20%. Finally, we review the observed scales of Arctic Ocean eddies.


Sign in / Sign up

Export Citation Format

Share Document