scholarly journals Intraseasonal Atmospheric Variability in the Extratropics and Its Relation to the Onset of Tropical Pacific Sea Surface Temperature Anomalies

2007 ◽  
Vol 20 (5) ◽  
pp. 926-936 ◽  
Author(s):  
Bruce T. Anderson

Abstract Previous research has shown that seasonal-mean boreal winter variations in the subtropical/extratropical sea level pressure and wind stress fields over the central North Pacific are significantly related to the state of the El Niño–Southern Oscillation (ENSO) 12–15 months later. Results presented in this note indicate that boreal winter ENSO events are also preceded by increased intraseasonal variance in the antecedent boreal winter atmospheric circulation patterns over the extratropical central North Pacific as well. Low (high) surface pressure anomalies associated with intraseasonal variability in this region are related to intraseasonal wind stress anomalies that represent a weakening (strengthening) of the trade winds over both the north and south subtropical/tropical Pacific. There is also a concurrent increase (decrease) in the central and eastern subtropical North Pacific sea surface temperatures that projects onto the seasonal-mean SST anomalies that precede mature ENSO events by 9–12 months. Overall these results suggest that similar to seasonal-mean subtropical surface pressure and wind stress fields, enhanced transient variability in the midlatitudes can subsequently induce changes in the atmospheric and oceanic structure of the tropical Pacific that may serve as a precursor to ENSO variability.

2012 ◽  
Vol 63 (1) ◽  
pp. 34 ◽  
Author(s):  
Ana Redondo-Rodriguez ◽  
Scarla J. Weeks ◽  
Ray Berkelmans ◽  
Ove Hoegh-Guldberg ◽  
Janice M. Lough

Understanding the nature and causes of recent climate variability on the Great Barrier Reef (GBR), Australia, is fundamental to assessing the impacts of future climate change on this complex ecosystem. New analytical tools, improved data quality and resolution, longer time-series and new variables provide an opportunity to re-assess existing paradigms. Here, we examined sea surface temperature (SST), sea level pressure, surface winds, sea surface height and ocean currents for the period from 1948 to 2009. We focussed on the relationship between GBR surface climate and the wider tropical Pacific, and the influence of El Niño-Southern Oscillation (ENSO) events. Also, for the first time, we investigated the impact of the El Niño/La Niña Modoki phenomenon. Although neither type of ENSO event is a primary driver of inter-annual climate variability on the GBR, their influence is conspicuous. Classical ENSO events have a strong signature in the atmospheric circulation in the northern GBR but no significant relationship with SSTs and the opposite applies for the southern GBR. Conversely, El Niño/La Niña Modoki is significantly related to summer SSTs on the northern GBR, but not for the southern GBR. This study enhances our understanding of tropical Pacific and GBR climate drivers and will improve future predictions of change in climate variables that are likely to impact on the complex GBR ecosystem.


2017 ◽  
Vol 30 (3) ◽  
pp. 1041-1059 ◽  
Author(s):  
Andrew M. Chiodi ◽  
D. E. Harrison

Abstract The fundamental importance of near-equatorial zonal wind stress in the evolution of the tropical Pacific Ocean’s seasonal cycle and El Niño–Southern Oscillation (ENSO) events is well known. It has been two decades since the TAO/TRITON buoy array was deployed, in part to provide accurate surface wind observations across the Pacific waveguide. It is timely to revisit the impact of TAO/TRITON winds on our ability to simulate and thereby understand the evolution of sea surface temperature (SST) in this region. This work shows that forced ocean model simulations of SST anomalies (SSTAs) during the periods with a reasonably high buoy data return rate can reproduce the major elements of SSTA variability during ENSO events using a wind stress field computed from TAO/TRITON observations only. This demonstrates that the buoy array usefully fulfills its waveguide-wind-measurement purpose. Comparison of several reanalysis wind fields commonly used in recent ENSO studies with the TAO/TRITON observations reveals substantial biases in the reanalyses that cause substantial errors in the variability and trends of the reanalysis-forced SST simulations. In particular, the negative trend in ERA-Interim is much larger and the NCEP–NCAR Reanalysis-1 and NCEP–DOE Reanalysis-2 variability much less than seen in the TAO/TRITON wind observations. There are also mean biases. Thus, even with the TAO/TRITON observations available for assimilation into these wind products, there remain oceanically important differences. The reanalyses would be much more useful for ENSO and tropical Pacific climate change study if they would more effectively assimilate the TAO/TRITON observations.


2007 ◽  
Vol 20 (8) ◽  
pp. 1593-1599 ◽  
Author(s):  
Bruce T. Anderson

Abstract Previous research has shown that seasonal mean variations in both the subtropical/extratropical sea level pressures over the central North Pacific and the subsurface heat content anomalies in the western equatorial Pacific are significantly related to the state of the El Niño–Southern Oscillation (ENSO) 12–18 months later. Here we find that positive (negative) subsurface temperature anomalies in the western equatorial Pacific during boreal summer/fall, followed by negative (positive) anomalies in the sea level pressure fields over the subtropical central North Pacific during boreal winter, tend to result in positive (negative) mature ENSO events 12–15 months later (i.e., during the following boreal winter). When the intervening sea level pressure anomalies are of the same sign as the preceding heat-content anomalies, the correlation between the heat-content anomalies and the following boreal-winter ENSO state disappears. There is still some relation between the boreal-winter sea level pressure anomalies and the ENSO state the following year when the two precursor patterns are of the same sign; however, the correlation is smaller and the ENSO events tend to be weaker. Additional analysis indicates that the two precursor fields are related to one another; however, the sea level pressure variations contain more unique information about, and provide better predictability of, the state of the following ENSO system than do the heat content anomalies.


Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1103-1113
Author(s):  
Patrick Wagner ◽  
Markus Scheinert ◽  
Claus W. Böning

Abstract. Regional anomalies of steric sea level are either due to redistribution of heat and freshwater anomalies or due to ocean–atmosphere buoyancy fluxes. Interannual to decadal variability in sea level across the tropical Pacific is mainly due to steric variations driven by wind stress anomalies. The importance of air–sea buoyancy fluxes is less clear. We use a global, eddy-permitting ocean model and a series of sensitivity experiments with quasi-climatological momentum and buoyancy fluxes to identify the contribution of buoyancy fluxes for interannual to decadal sea level variability in the tropical Pacific. We find their contribution on interannual timescales to be strongest in the central tropical Pacific at around a 10∘ latitude in both hemispheres and also relevant in the very east of the tropical domain. Buoyancy-flux-forced anomalies are correlated with variations driven by wind stress changes, but their effect on the prevailing anomalies and the importance of heat and freshwater fluxes vary locally. In the eastern tropical basin, interannual sea level variability is amplified by anomalous heat fluxes, while the importance of freshwater fluxes is small, and neither has any impact on decadal timescales. In the western tropical Pacific, the variability on interannual and decadal timescales is dampened by both heat and freshwater fluxes. The mechanism involves westward-propagating Rossby waves that are triggered during El Niño–Southern Oscillation (ENSO) events by anomalous buoyancy fluxes in the central tropical Pacific and counteract the prevailing sea level anomalies once they reach the western part of the basin.


2019 ◽  
Vol 32 (24) ◽  
pp. 8755-8770 ◽  
Author(s):  
Andrew M. Chiodi

Abstract Accurate real-time knowledge of equatorial Pacific wind stress is critical for monitoring the state of the tropical Pacific Ocean and understanding sea surface temperature anomaly (SSTA) development associated with El Niño–Southern Oscillation (ENSO) events. The tropical Pacific moored-buoy array has been shown to adequately provide this knowledge when operating as designed. Ocean model simulation of equatorial Pacific SSTA by moored-buoy winds reveals that recent western Pacific buoy losses exceed the array’s minimal redundancy. Additional wind measurements are needed to adequately simulate ENSO-related SSTA development when large portions of the moored-buoy array have been lost or decommissioned. Prospects for obtaining this supplemental wind information in real time are evaluated from simulations of central equatorial Pacific SSTA development during 2017 and end-of-year Niño-3.4 conditions during the previous 25 years. Results show that filling multiple-buoy-dropout gaps with winds from a pair of scatterometers (2000–17) achieves simulation accuracy improving upon that available from the moored-buoy array in the case in which large portions of the array are out. Forcing with the reanalysis-product winds most commonly used in recent ENSO studies or the scatterometer measurements (without the buoy winds) degrades simulation accuracy. The utility of having accurate basinwide wind stress information is demonstrated in an examination of the role that easterly weather-scale wind events played in driving the unexpected development of La Niña in 2017 and by showing that wintertime Niño-3.4 conditions can be statistically forecast, with skill comparable to state-of-the-art coupled models, on the basis of accurate knowledge of equatorial Pacific wind variability over spring or summer.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2006 ◽  
Vol 19 (16) ◽  
pp. 3863-3881 ◽  
Author(s):  
E. Manzini ◽  
M. A. Giorgetta ◽  
M. Esch ◽  
L. Kornblueh ◽  
E. Roeckner

Abstract The role of interannual variations in sea surface temperatures (SSTs) on the Northern Hemisphere winter polar stratospheric circulation is addressed by means of an ensemble of nine simulations performed with the middle atmosphere configuration of the ECHAM5 model forced with observed SSTs during the 20-yr period from 1980 to 1999. Results are compared to the 40-yr ECMWF Re-Analysis (ERA-40). Three aspects have been considered: the influence of the interannual SST variations on the climatological mean state, the response to El Niño–Southern Oscillation (ENSO) events, and the influence on systematic temperature changes. The strongest influence of SST variations has been found for the warm ENSO events considered. Namely, it has been found that the large-scale pattern associated with the extratropical tropospheric response to the ENSO phenomenon during northern winter enhances the forcing and the vertical propagation into the stratosphere of the quasi-stationary planetary waves emerging from the troposphere. This enhanced planetary wave disturbance thereafter results in a polar warming of a few degrees in the lower stratosphere in late winter and early spring. Consequently, the polar vortex is weakened, and the warm ENSO influence clearly emerges also in the zonal-mean flow. In contrast, the cold ENSO events considered do not appear to have an influence distinguishable from that of internal variability. It is also not straightforward to deduce the influence of the SSTs on the climatological mean state from the simulations performed, because the simulated internal variability of the stratosphere is large, a realistic feature. Moreover, the results of the ensemble of simulations provide weak to negligible evidence for the possibility that SST variations during the two decades considered are substantially contributing to changes in the polar temperature in the winter lower stratosphere.


2006 ◽  
Vol 19 (6) ◽  
pp. 998-1012 ◽  
Author(s):  
Bruce T. Anderson ◽  
Eric Maloney

Abstract This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier. The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.


Sign in / Sign up

Export Citation Format

Share Document