Synthesis of Results from the North American Monsoon Experiment (NAME) Process Study

2007 ◽  
Vol 20 (9) ◽  
pp. 1601-1607 ◽  
Author(s):  
Wayne Higgins ◽  
David Gochis

Abstract An international team of scientists from the United States, Mexico, and Central America carried out a major field campaign during the summer of 2004 to develop an improved understanding of the North American monsoon system leading to improved precipitation forecasts. Results from this campaign, which is the centerpiece of the North American Monsoon Experiment (NAME) Process Study, are reported in this issue of the Journal of Climate. In addition to a synthesis of key findings, this brief overview article also raises some important unresolved issues that require further attention. More detailed background information on NAME, including motivating science questions, where NAME 2004 was conducted, when, and the experimental design, was published previously by Higgins et al.

2007 ◽  
Vol 20 (9) ◽  
pp. 1608-1627 ◽  
Author(s):  
Andrea J. Ray ◽  
Gregg M. Garfin ◽  
Margaret Wilder ◽  
Marcela Vásquez-León ◽  
Melanie Lenart ◽  
...  

Abstract This article presents ongoing efforts to understand interactions between the North American monsoon and society in order to develop applications for monsoon research in a highly complex, multicultural, and binational region. The North American monsoon is an annual precipitation regime that begins in early June in Mexico and progresses northward to the southwestern United States. The region includes stakeholders in large urban complexes, productive agricultural areas, and sparsely populated arid and semiarid ecosystems. The political, cultural, and socioeconomic divisions between the United States and Mexico create a broad range of sensitivities to climate variability as well as capacities to use forecasts and other information to cope with climate. This paper highlights methodologies to link climate science with society and to analyze opportunities for monsoon science to benefit society in four sectors: natural hazards management, agriculture, public health, and water management. A list of stakeholder needs and a calendar of decisions is synthesized to help scientists link user needs to potential forecasts and products. To ensure usability of forecasts and other research products, iterative scientist–stakeholder interactions, through integrated assessments, are recommended. These knowledge-exchange interactions can improve the capacity for stakeholders to use forecasts thoughtfully and inform the development of research, and for the research community to obtain feedback on climate-related products and receive insights to guide research direction. It is expected that integrated assessments can capitalize on the opportunities for monsoon science to inform decision making and, in the best instances, reduce regional climate vulnerabilities and enhance regional sustainability.


2020 ◽  
Vol 114 (4) ◽  
pp. 772-775

On November 30, 2018, Canada, Mexico, and the United States signed an agreement renegotiating the North American Free Trade Agreement (NAFTA). By the spring of 2020, all three countries had approved this agreement—known in the United States as the United States-Mexico-Canada Agreement (USMCA)—through their respective domestic ratification processes. The USMCA entered into force on July 1, 2020, amid extended U.S.-Mexico and U.S.-Canada border restrictions due to the COVID-19 pandemic. On August 6, 2020, President Trump imposed tariffs on Canadian aluminum—tariffs that his administration had previously put in place in 2018 but had removed in 2019 in order to smooth the USMCA's path to ratification.


2020 ◽  
pp. 26-39
Author(s):  
Marcos Noé Maya Martínez

In Mexican agriculture there are branches and regions that have benefited from the trade liberalization and economic integration under the North American Free Trade Agreement (NAFTA), but there are sectors, essentially those of basic grains that have been affected by liberalization, which exacerbates the country's food dependence. To understand the trends already in the framework of the United States, Mexico and Canada Agreement (USMCA) a projection (extrapolation) of the next 11 years will be made, based on the behavior already analyzed.


2007 ◽  
Vol 20 (9) ◽  
pp. 1843-1861 ◽  
Author(s):  
J. Craig Collier ◽  
Guang J. Zhang

Abstract Simulation of the North American monsoon system by the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM3) is evaluated in its sensitivity to increasing horizontal resolution. For two resolutions, T42 and T85, rainfall is compared to Tropical Rainfall Measuring Mission (TRMM) satellite-derived and surface gauge-based rainfall rates over the United States and northern Mexico as well as rainfall accumulations in gauges of the North American Monsoon Experiment (NAME) Enhanced Rain Gauge Network (NERN) in the Sierra Madre Occidental. Simulated upper-tropospheric mass and wind fields are compared to those from NCEP–NCAR reanalyses. The comparison presented herein demonstrates that tropospheric motions associated with the North American monsoon system are sensitive to increasing the horizontal resolution of the model. An increase in resolution from T42 to T85 results in changes to a region of large-scale midtropospheric descent found north and east of the monsoon anticyclone. Relative to its simulation at T42, this region extends farther south and west at T85. Additionally, at T85, the subsidence is stronger. Consistent with the differences in large-scale descent, the T85 simulation of CAM3 is anomalously dry over Texas and northeastern Mexico during the peak monsoon months. Meanwhile, the geographic distribution of rainfall over the Sierra Madre Occidental region of Mexico is more satisfactorily simulated at T85 than at T42 for July and August. Moisture import into this region is greater at T85 than at T42 during these months. A focused study of the Sierra Madre Occidental region in particular shows that, in the regional-average sense, the timing of the peak of the monsoon is relatively insensitive to the horizontal resolution of the model, while a phase bias in the diurnal cycle of monsoon season precipitation is somewhat reduced in the higher-resolution run. At both resolutions, CAM3 poorly simulates the month-to-month evolution of monsoon rainfall over extreme northwestern Mexico and Arizona, though biases are considerably improved at T85.


2021 ◽  
pp. 1-20
Author(s):  
Ayana Omilade Flewellen ◽  
Justin P. Dunnavant ◽  
Alicia Odewale ◽  
Alexandra Jones ◽  
Tsione Wolde-Michael ◽  
...  

This forum builds on the discussion stimulated during an online salon in which the authors participated on June 25, 2020, entitled “Archaeology in the Time of Black Lives Matter,” and which was cosponsored by the Society of Black Archaeologists (SBA), the North American Theoretical Archaeology Group (TAG), and the Columbia Center for Archaeology. The online salon reflected on the social unrest that gripped the United States in the spring of 2020, gauged the history and conditions leading up to it, and considered its rippling throughout the disciplines of archaeology and heritage preservation. Within the forum, the authors go beyond reporting the generative conversation that took place in June by presenting a road map for an antiracist archaeology in which antiblackness is dismantled.


Sign in / Sign up

Export Citation Format

Share Document