scholarly journals The Influence of a Weakening of the Atlantic Meridional Overturning Circulation on ENSO

2007 ◽  
Vol 20 (19) ◽  
pp. 4899-4919 ◽  
Author(s):  
A. Timmermann ◽  
Y. Okumura ◽  
S.-I. An ◽  
A. Clement ◽  
B. Dong ◽  
...  

Abstract The influences of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs). In the CGCMs, a substantial weakening of the AMOC is induced by adding freshwater flux forcing in the northern North Atlantic. In response, the well-known surface temperature dipole in the low-latitude Atlantic is established, which reorganizes the large-scale tropical atmospheric circulation by increasing the northeasterly trade winds. This leads to a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic and also the eastern tropical Pacific. Because of evaporative fluxes, mixing, and changes in Ekman divergence, a meridional temperature anomaly is generated in the northeastern tropical Pacific, which leads to the development of a meridionally symmetric thermal background state. In four out of five CGCMs this leads to a substantial weakening of the annual cycle in the eastern equatorial Pacific and a subsequent intensification of ENSO variability due to nonlinear interactions. In one of the CGCM simulations, an ENSO intensification occurs as a result of a zonal mean thermocline shoaling. Analysis suggests that the atmospheric circulation changes forced by tropical Atlantic SSTs can easily influence the large-scale atmospheric circulation and hence tropical eastern Pacific climate. Furthermore, it is concluded that the existence of the present-day tropical Pacific cold tongue complex and the annual cycle in the eastern equatorial Pacific are partly controlled by the strength of the AMOC. The results may have important implications for the interpretation of global multidecadal variability and paleo-proxy data.

2008 ◽  
Vol 21 (12) ◽  
pp. 3002-3019 ◽  
Author(s):  
Lixin Wu ◽  
Chun Li ◽  
Chunxue Yang ◽  
Shang-Ping Xie

Abstract The global response to a shutdown of the Atlantic meridional overturning circulation (AMOC) is investigated by conducting a water-hosing experiment with a coupled ocean–atmosphere general circulation model. In the model, the addition of freshwater in the subpolar North Atlantic shuts off the AMOC. The intense cooling in the extratropical North Atlantic induces a widespread response over the global ocean. In the tropical Atlantic, a sea surface temperature (SST) dipole forms, with cooling north and warming on and south of the equator. This tropical dipole is most pronounced in June–December, displacing the Atlantic intertropical convergence zone southward. In the tropical Pacific, a SST dipole forms in boreal spring in response to the intensified northeast trades across Central America and triggering the development of an El Niño–like warming that peaks on the equator in boreal fall. In the extratropical North Pacific, a basinwide cooling of ∼1°C takes place, with a general westward increase in intensity. A series of sensitivity experiments are carried out to shed light on the ocean–atmospheric processes for these global teleconnections. The results demonstrate the following: ocean dynamical adjustments are responsible for the formation of the tropical Atlantic dipole; air–sea interaction over the tropical Atlantic is key to the tropical Pacific response; extratropical teleconnection from the North Atlantic is most important for the North Pacific cooling, with the influence from the tropics being secondary; and the subtropical North Pacific cooling propagates southwestward from off Baja California to the western and central equatorial Pacific through the wind–evaporation–SST feedback.


2009 ◽  
Vol 5 (3) ◽  
pp. 551-570 ◽  
Author(s):  
M. Kageyama ◽  
J. Mignot ◽  
D. Swingedouw ◽  
C. Marzin ◽  
R. Alkama ◽  
...  

Abstract. Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC) as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv) resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv) AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv) are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the Indian monsoon weakening appears to be connected to the North Atlantic cooling via that of the troposphere over Eurasia. Such an understanding of these teleconnections and their timing could be useful for paleodata interpretation.


2007 ◽  
Vol 20 (19) ◽  
pp. 4940-4956 ◽  
Author(s):  
Uta Krebs ◽  
A. Timmermann

Abstract Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case. The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.


2019 ◽  
Vol 519 ◽  
pp. 120-129 ◽  
Author(s):  
Stefano Crivellari ◽  
Cristiano Mazur Chiessi ◽  
Henning Kuhnert ◽  
Christoph Häggi ◽  
Gesine Mollenhauer ◽  
...  

2020 ◽  
Author(s):  
Brady Ferster ◽  
Alexey Fedorov ◽  
Juliette Mignot ◽  
Eric Guilyardi

<p>The Arctic and North Atlantic Ocean play a fundamental role in Earth’s water cycle, distribution of energy (i.e. heat), and the formation of cold, dense waters. Through the Atlantic meridional overturning circulation (AMOC), heat is transported to the high-latitudes. Classically, the climate impact of AMOC variations has been investigated through hosing experiments, where anomalous freshwater is artificially added or removed from the North Atlantic to modulate deep water formation. However, such a protocol introduces artificial changes in the subpolar area, possibly masking the effect of the AMOC modulation. Here, we develope a protocol where AMOC intensity is modulated remotely through the teleconnection of the tropical Indian Ocean (TIO), so as to investigate more robustly the impact of the AMOC on climate. Warming in the TIO has recently been shown to strengthen the Walker circulation in the Atlantic through the propagation of Kelvin and Rossby waves, increasing and stabilizing the AMOC on longer timescales. Using the latest coupled-model from Insitut Pierre Simon Laplace (IPSL-CM6), we have designed a three-member ensemble experiment nudging the surface temperatures of the TIO by -2°C, +1°C, and +2°C for 100 years. The objectives are to better quantify the timescales of AMOC variability outside the use of hosing experiments and the TIO-AMOC relationship.  In each ensemble member, there are two distinct features compared to the control run. The initial changes in AMOC (≤20 years) are largely atmospherically driven, while on longer timescales is largely driven by the TIO teleconnection to the tropical Atlantic. In the northern North Atlantic, changes in sensible heat fluxes range from 15 to 20 W m<sup>-2 </sup>in all three members compared to the control run, larger than the natural variability. On the longer timescales, AMOC variability is strongly influenced from anomalies in the tropical Atlantic Ocean. The TIO teleconnection supports decreased precipitation in the tropical Atlantic Ocean during warming (opposite during TIO cooling) events, as well as positive salinity anomalies and negative temperature anomalies. Using lagged correlations, there are the strongest correlations on scales within one year and a delayed response of 30 years (in the -2°C ensembles). In comparing the last 20 years, nudging the TIO induces a 3.3 Sv response per 1°C change. In summary, we have designed an experiment to investigate the AMOC variability without directly changing the North Atlantic through hosing, making way for a more unbiased approach to analysing the AMOC variability in climate models.</p>


2020 ◽  
Author(s):  
Chris W. Hughes ◽  
Joanne Williams ◽  
Adam Blaker ◽  
Andrew C. Coward

<p>The rapid propagation of boundary waves (or, equivalently, the strong influence of topography on vorticity balance) ensures that bottom pressure along the global continental slope reflects large scale ocean processes, making it possible to see through the fog of the mesoscale, which obscures many observable quantities. This fact is exploited in systems to monitor the Atlantic Meridional Overturning Circulation (AMOC). Here, we use diagnostics from an ocean model with realistic mesoscale variability to demonstrate two things. First: boundary pressures form an efficient method of monitoring AMOC variability. Second: pressures are remarkably constant along isobaths around the global continental slope, varying by less than 5 cm sea-level-equivalent over vast distances below the directly wind-driven circulation. In the latter context, the AMOC stands out as a clear exception, leading to a link between the AMOC and differences in the hydrography of entire ocean basins.</p>


2021 ◽  
Author(s):  
Leon Hermanson ◽  
Doug Smith ◽  
Nick Dunstone ◽  
Rosie Eade

<p>The Atlantic Meridional Overturning Circulation (AMOC) at 26N has been measured since 2004 by the RAPID-MOCHA array. On a multi-year timescale it shows a decline with signs of a recovery since around 2012. This variability is likely to be part of longer decadal variability. We examine here the decadal variability of the AMOC and its drivers in a coupled model run nudged to observations from 1960-2017. Temperature and winds are nudged throughout the atmosphere and potential temperature and salinity are nudged in the ocean, but the ocean velocities are allowed to vary freely. We nudge an ensemble of 10 ocean analyses into the ocean model to get an ensemble of responses, the mean of which reproduces the observed AMOC. We use these ocean-atmosphere re-analyses to study the drivers of the AMOC. The North Atlantic Oscillation (NAO) is well known to have an impact on the AMOC and is an important driver here. We find that the tropical Pacific also has a strong impact on the subtropical AMOC on multi-annual to decadal timescales. Together these two factors can explain more than half of all variability of the AMOC at 26N through wind forcing associated with Rossby waves and western boundary waves. This Pacific impact, not reported on before, is from windstress curl anomalies close to the East Coast of the southern US due to changes in the Pacific storm track and the Walker Circulation. As both the NAO and tropical Pacific variability is associated with solar and volcanic forcing, it is possible that solar and volcanic forcing are important for multi-annual to multi-decadal AMOC variability. We use observations of the NAO and tropical Pacific to reconstruct the AMOC from 1870 to present day and predict a continued recovery in the future.</p>


2021 ◽  
pp. 1-57
Author(s):  
Hong-Chang Ren ◽  
Jinqing Zuo ◽  
Weijing Li

AbstractThe interannual variability of boreal summer sea surface temperature (SST) in the tropical Atlantic displays two dominant modes, the Atlantic zonal mode highlighting SST variations in the equatorial–southern tropical Atlantic (ESTA) region and the northern tropical Atlantic (NTA) mode focusing on SST fluctuations in the NTA region except in the Gulf of Guinea. Observational evidence indicates that both the boreal summer ESTA and NTA warming are accompanied by a pair of anomalous low-level anti-cyclones over the western tropical Pacific, and the NTA-related anti-cyclone is more obvious than the ESTA-related one. Both atmosphere-only and partially coupled experiments conducted with the Community Earth System Model Version 1.2 support the observed NTA–Pacific teleconnection. In contrast, the ESTA-induced atmospheric circulation response is negligible over the tropical Pacific in the atmosphere-only experiments, and though the response becomes stronger in the partially coupled experiments, obvious difference still exists between the simulations and observation. The ESTA-induced atmospheric circulation response is featured by an anomalous low-level cyclone over the western tropical Pacific in the partially coupled experiments, opposite to its observed counterpart. It is found that the ESTA warming coincides with significantly La Niña-like SST anomalies in the central–eastern equatorial Pacific, the influence of which on the tropical atmospheric circulation is opposite to that of the ESTA warming, and therefore contributes to difference between the ESTA-related simulations and observation. Moreover, the cold climatological mean SST in the ESTA region is unfavourable to enhancing the ESTA–Pacific teleconnection during boreal summer.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Catherine Minnehan

Variations in large-scale convection in the Atlantic Ocean are likely driven by wind.


2014 ◽  
Vol 11 (2) ◽  
pp. 1129-1147
Author(s):  
Z. Song ◽  
H. Liu ◽  
L. Zhang ◽  
F. Qiao ◽  
C. Wang

Abstract. The annual cycle of sea surface temperature (SST) in the eastern equatorial Pacific (EEP) with the largest amplitude in the tropical oceans is poorly represented in the coupled general circulation models (CGCMs) of the Coupled Model Intercomparison Project phase 3 (CMIP3). In this study, 18 models from CMIP5 projects are evaluated in simulating the annual cycle in the EEP. Fourteen models are able to simulate the annual cycle, and four still show erroneous information in the simulation, which suggests that the performances of CGCMs have been improved. The results of multi-model ensemble (MME) mean show that CMIP5 CGCMs can capture the annual cycle signal in the EEP with correlation coefficients up to 0.9. For amplitude simulations, EEP region 1 (EP1) near the eastern coast shows weaker results than observations due to the large warm SST bias from the southeastern tropical Pacific in the boreal autumn. In EEP region 2 (EP2) near the central equatorial Pacific, the simulated amplitudes are nearly the same as the observations because of the presence of a quasi-constant cold bias associated with poor cold tongue climatology simulation in the CGCMs. To improve CGCMs in the simulation of a realistic SST seasonal cycle, local and remote climatology SST biases that exist in both CMIP3 and CMIP5 CGCMs must be resolved at least for the simulation in the central equatorial Pacific and the southeastern tropical Pacific.


Sign in / Sign up

Export Citation Format

Share Document