scholarly journals Typhoon Nina and the August 1975 Flood over Central China

2017 ◽  
Vol 18 (2) ◽  
pp. 451-472 ◽  
Author(s):  
Long Yang ◽  
Maofeng Liu ◽  
James A. Smith ◽  
Fuqiang Tian

Abstract The August 1975 flood in central China was one of the most destructive floods in history. Catastrophic flooding was the product of extreme rainfall from Typhoon Nina over a 3-day period from 5 to 7 August 1975. Despite the prominence of the August 1975 flood, relatively little is known about the evolution of rainfall responsible for the flood. Details of extreme rainfall and flooding for the August 1975 event in central China are examined based on empirical analyses of rainfall and streamflow measurements and based on downscaling simulations using the Weather Research and Forecasting (WRF) Model, driven by Twentieth Century Reanalysis (20CR) fields. Key hydrometeorological features of the flood event are placed in a climatological context through hydroclimatological analyses of 20CR fields. Results point to the complex evolution of rainfall over the 3-day period with distinctive periods of storm structure controlling rainfall distribution in the flood region. Blocking plays a central role in controlling anomalous storm motion of Typhoon Nina and extreme duration of heavy rainfall. Interaction of Typhoon Nina with a second tropical depression played a central role in creating a zone of anomalously large water vapor transport, a central feature of heavy rainfall during the critical storm period on 7 August. Analyses based on the quasigeostrophic omega equation identified the predominant role of warm air advection for synoptic-scale vertical motion. Back-trajectory analyses using a Lagrangian parcel tracking algorithm are used to assess and quantify water vapor transport for the flood. The analytical framework developed in this study is designed to improve hydrometeorological approaches for flood-control design.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Yang ◽  
Guan-yu Xu ◽  
Xiaofang Wang ◽  
Chunguang Cui ◽  
Jingyu Wang ◽  
...  

There are continuous precipitation systems moving eastward from the Tibetan Plateau to the middle and lower reaches of the Yangtze-Huai River during the Mei-yu period. We selected 20 typical Mei-yu front precipitation cases from 2010 to 2015 based on observational and reanalysis data and studied the characteristics of their environmental fields. We quantitatively analyzed the transport and sources of water vapor in the rainstorms using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4.9) model. All 20 Mei-yu front precipitation cases occurred in a wide region from the Tibetan Plateau to the Yangtze-Huai River. The South Asian high and upper level jet stream both had strong intensities during the Mei-yu front rainstorm periods. Heavy rainfall mainly occurred in the divergence zone to the right of the high-level jet and in the convergence zone of the low-level jet, where strong vertical upward flows provided the dynamic conditions required for heavy rainfall. The water vapor mainly originated from the Indian Ocean, Bay of Bengal, and South China Sea. 52% of the air masses over the western Tibetan Plateau originated from Central Asia, which were rich in water vapor. The water vapor contribution at the initial position was only 41.5% due to the dry, cold air mass over Eurasia, but increased to 47.6% at the final position. Over the eastern Tibetan Plateau to the Sichuan Basin region, 40% of the air parcels came from the Indian Ocean, which was the main channel for water vapor transport. For the middle and lower reaches of the Yangtze River, 37% of the air parcels originated from the warm and humid Indian Ocean. The water vapor contribution at the initial position was 38.6%, but increased to 40.2% after long-distance transportation.


2021 ◽  
Author(s):  
Yinan Cai ◽  
Zesheng Chen ◽  
Yan Du

Abstract This study investigates the role of water vapor transport and sea surface temperature (SST) warming in the tropical Indian Ocean (TIO) on the heavy rainfall in central China during boreal early summer. In the past four decades, four significant rainfall events, in 1983, 1998, 2016, and 2020, occured in central China and caused severe floods, in which the year 2020 has the most extreme event. All four events are associated with significant TIO SST warming, associated with a strong and westward extending anomalous anticyclone on the western North Pacific (WNPAC). The anomalous winds in the northwestern flank of the WNPAC bring excess water vapor into central China. The water vapor, mainly carried from the central tropical Pacific, converges in central China and result in heavy rainfall. A theory of regional ocean-atmosphere interaction can well explain the processes, called the Indo-Western Pacific Ocean Capacitor (IPOC) effect. The WNPAC is usually associated with strong El Niño-Southern Oscillation (ENSO), except for the 2020 case. The 2020 event is extraordinary, without ensuring El Niño occurred in the previous winter. In 2020, the significant TIO warming sustained the anomalous WNPAC, inducing the most significant extreme rainfall event in central China. This study reveals that the IPOC effect can dramatically influence the East Asian climate even without involving the ENSO in the Pacific.


2009 ◽  
Vol 24 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
Alain Roberge ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense regions of water vapor transport can originate in either the tropical or subtropical oceans, and sometimes have been referred to as Pineapple Express events in previous literature when originating near Hawaii. However, the focus of this paper will be on diagnosing the synoptic-scale signatures of all significant water vapor transport events associated with poleward moisture transport impacting the western coast of Canada, regardless of the exact points of origin of the associated atmospheric river. A trajectory analysis is used to partition the events as a means of creating coherent and meaningful synoptic-scale composites. The results indicate that these IWVT events can be clustered by the general area of origin of the majority of the saturated parcels impacting British Columbia and the Yukon Territories. IWVT events associated with more zonal trajectories are characterized by a strong and mature Aleutian low, whereas IWVT events associated with more meridional trajectories are often characterized by an anticyclone situated along the California or Oregon coastline, and a relatively mature poleward-traveling cyclone, commonly originating in the central North Pacific.


1986 ◽  
Vol 108 (1) ◽  
pp. 19-27 ◽  
Author(s):  
L. M. Hanna ◽  
P. W. Scherer

A steady-state, one-dimensional theoretical model of human respiratory heat and water vapor transport is developed. Local mass transfer coefficients measured in a cast replica of the upper respiratory tract are incorporated into the model along with heat transfer coefficients determined from the Chilton-Colburn analogy and from data in the literature. The model agrees well with reported experimental measurements and predicts that the two most important parameters of the human air-conditioning process are: 1) the blood temperature distribution along the airway walls, and 2) the total cross-sectional area and perimeter of the nasal cavity. The model also shows that the larynx and pharynx can actually gain water over a respiratory cycle and are the regions of the respiratory tract most subject to drying. With slight modification, the model can be used to investigate respiratory heat and water vapor transport in high stress environments, pollutant gas uptake in the respiratory tract, and the connection between respiratory air-conditioning and the function of the mucociliary escalator.


Sign in / Sign up

Export Citation Format

Share Document